

МІНІСТЕРСТВО ОХОРОНИ ЗДОРОВ'Я УКРАЇНИ
БУКОВИНСЬКИЙ ДЕРЖАВНИЙ МЕДИЧНИЙ УНІВЕРСИТЕТ

МАТЕРІАЛИ
106-ї підсумкової науково-практичної конференції
з міжнародною участю
професорсько-викладацького колективу
БУКОВИНСЬКОГО ДЕРЖАВНОГО МЕДИЧНОГО УНІВЕРСИТЕТУ
03, 05, 10 лютого 2025 року

Конференція внесена до Реєстру заходів безперервного професійного розвитку,
які проводитимуться у 2025 році №1005249

Чернівці – 2025

УДК 61(063)

М 34

Матеріали підсумкової 106-ї науково-практичної конференції з міжнародною участю професорсько-викладацького колективу Буковинського державного медичного університету (м. Чернівці, 03, 05, 10 лютого 2025 р.) – Чернівці: Медуніверситет, 2025. – 450 с. іл.

У збірнику представлені матеріали 106-ї науково-практичної конференції з міжнародною участю професорсько-викладацького колективу Буковинського державного медичного університету (м. Чернівці, 03, 05, 10 лютого 2025 р.) зі стилістикою та орфографією у авторській редакції. Публікації присвячені актуальним проблемам фундаментальної, теоретичної та клінічної медицини.

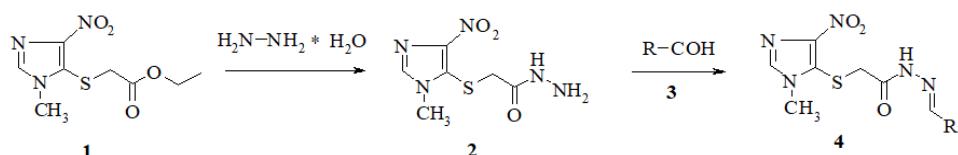
Загальна редакція: професор Геруш І.В., професорка Годованець О.І., професор Безрук В.В.

Наукові рецензенти:
професор Батіг В.М.
професор Білоокий В.В.
професор Булик Р.Є.
професор Давиденко І.С.
професор Дейнека С.Є.
професорка Денисенко О.І.
професор Заморський І.І.
професорка Колоскова О.К.
професорка Кравченко О.В.
професорка Пашковська Н.В.
професорка Ткачук С.С.
професорка Тодоріко Л.Д.
професорка Хухліна О.С.
професор Чорноус В.О.

ISBN 978-617-519-135-4

© Буковинський державний медичний
університет, 2025

Panasenko N. V.
SYNTHESIS AND ANTIMICROBIAL ACTIVITY
N-HETERYLIDENEHYDRAZIDES
4-NITROIMIDAZOLE-5-THIOACETIC ACID
Department of Medical and Pharmaceutical Chemistry
Bukovinian State Medical University


Introduction. In modern methodologies for the rational design of new biologically active substances and lead compounds for the creation of medicinal products, imidazole-containing structures play a key role due to their powerful medical and biological potential. An important place among imidazoles is occupied by various types of their functionalized derivatives, which are characterized by antibacterial, antifungal, anticancer, and antituberculosis action. Modification of the nitro-containing imidazole ring with other functional groups proved to be quite productive for the construction of structures with increased pharmacological potential.

The aim of the study. Realization of targeted synthesis of new 4-nitroimidazole structures with 5-sulfanyl-functionalized fragments, additionally modified by pharmacophoric hydrazide-hydrazone groups, and investigation of their antimicrobial action.

Materials and Methods. Organic synthesis, analytical and spectral methods, pharmacological screening, molecular docking.

Results. The synthetic aspect of the problem was solved by a two-stage transformation of the available basic substrate - ethyl ester of 1-methyl-4-nitroimidazole-5-thioacetic acid 1. In the first stage, as a result of boiling ester 1 in ethanol for 3 hours with 90% hydrazine hydrate, hydrazide was obtained 1-methyl-4-nitroimidazole-5-thioacetic acid 2 with a yield of 92%. Its further boiling in ethanol for 3 hours with heterylaldehydes 3 leads to the formation of hydrazones 4, which were isolated with yields of 67-92%.

The composition and structure of the intermediate and target compounds were confirmed by elemental analysis data and chromato-mass, ^1H NMR spectra. The antimicrobial activity of synthesized semicarbazones was screened against several test strains of gram-positive and gram-negative bacteria and fungi.

$\text{R} = 3\text{-ClC}_6\text{H}_4, 3\text{-MeOC}_6\text{H}_4, 3\text{-F}_2\text{CHOC}_6\text{H}_4, 3\text{-Pyridyl}$

Conclusions. New N-hetarylidene hydrazides of 4-nitroimidazole-5-thioacetic acid were synthesized by condensation of 1-methyl-4-nitroimidazole-5-thioacetic acid hydrazide with various carbaldehydes. The initial microbiological screening of the synthesized compounds revealed the presence of a pronounced antimicrobial effect among them and showed the promise of their further in-depth study.

Velyka A.Ya.
CHANGES IN CATALASE ACTIVITY IN THE BLOOD OF RATS UNDER THE EFFECT
OF MERCURY DICHLORIDE AGAINST A BACKGROUND OF SALT LOADING
Department of Medical and Pharmaceutical Chemistry
Bukovinian State Medical University

Introduction. Antioxidant defense processes play a significant role in the pathogenesis of various diseases, as the imbalance between the activation of free radical oxidation of