

VOLUME LXXV, ISSUE 4 PART 1, APRIL 2022

Since 1928

Wiadomości Lekarskie is abstracted and indexed in: PUBMED/MEDLINE, SCOPUS, EMBASE, INDEX COPERNICUS, POLISH MINISTRY OF EDUCATION AND SCIENCE, POLISH MEDICAL BIBLIOGRAPHY

Copyright: © ALUNA Publishing House.

Articles published on-line and available in open access are published under Creative Common Attribution-Non Commercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0) allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.

Wiadomości Lekarskie monthly journal

You can order the subscription for the journal from Wydawnictwo Aluna by:

prenumerata@wydawnictwo-aluna.pl Wydawnictwo Aluna Z.M. Przesmyckiego 29 05-510 Konstancin-Jeziorna Poland

Place a written order first.

If you need, ask for an invoice.
Payment should be done to the following account of the Publisher:

account number for Polish customers (PLN):

82 1940 1076 3010 7407 0000 0000

Credit Agricole Bank Polska S. A., SWIFT: AGRIPLPR

account number for foreign customers (EURO):

57 2490 0005 0000 4600 7604 3035 Alior Bank S. A.: SWIFT: ALBPPLPW

Subscription of twelve consecutive issues (1-12): Customers in Poland: 480 PLN/year Customers from other countries: 360 EURO/year

Editor in-Chief:

Prof. Władysław Pierzchała

Deputy Editor in-Chief:

Prof. Aleksander Sieroń

Statistical Editor:

Dr Lesia Rudenko

Managing Editor:

Agnieszka Rosa – amarosa@wp.pl

International Editorial Office:

Nina Radchenko (editor)

- n.radchenko@wydawnictwo-aluna.pl

Polish Medical Association (Polskie Towarzystwo Lekarskie):

Prof. Waldemar Kostewicz - President PTL

Prof. Jerzy Woy-Wojciechowski – Honorary President PTL

International Editorial Board - in-Chief:

Marek Rudnicki Chicago, USA

International Editorial Board - Members:

Kris Bankiewicz	San Francisco, USA	George Krol	New York, USA
Christopher Bara	Hannover, Germany	Krzysztof Łabuzek	Katowice, Poland
Krzysztof Bielecki	Warsaw, Poland	Henryk Majchrzak	Katowice, Poland
Zana Bumbuliene	Vilnius, Lithuania	Ewa Małecka-Tendera	Katowice, Poland
Ryszarda Chazan	Warsaw, Poland	Stella Nowicki	Memphis, USA
Stanislav Czudek	Ostrava, Czech Republic	Alfred Patyk	Gottingen, Germany
Jacek Dubiel	Cracow, Poland	Palmira Petrova	Yakutsk, Russia
Zbigniew Gasior	Katowice, Poland	Krystyna Pierzchała	Katowice, Poland
Andrzej Gładysz	Wroclaw, Poland	Tadeusz Płusa	Warsaw, Poland
Nataliya Gutorova	Kharkiv, Ukraine	Waldemar Priebe	Houston, USA
Marek Hartleb	Katowice, Poland	Maria Siemionow	Chicago, USA
Roman Jaeschke	Hamilton, Canada	Vladyslav Smiianov	Sumy, Ukraine
Andrzej Jakubowiak	Chicago, USA	Tomasz Szczepański	Katowice, Poland
Oleksandr Katrushov	Poltava, Ukraine	Andrzej Witek	Katowice, Poland
Peter Konturek	Saalfeld, Germany	Zbigniew Wszolek	Jacksonville, USA
Jerzy Korewicki	Warsaw, Poland	Vyacheslav Zhdan	Poltava, Ukraine
Jan Kotarski	Lublin, Poland	Jan Zejda	Katowice, Poland

Distribution and Subscriptions:

Bartosz Guterman prenumerata@wydawnictwo-aluna.pl **Graphic design / production:**

Grzegorz Sztank www.red-studio.eu

Publisher:

ALUNA Publishing House ul. Przesmyckiego 29, 05-510 Konstancin – Jeziorna www.wydawnictwo-aluna.pl www.wiadomoscilekarskie.pl www.wiadlek.pl

FOR AUTHORS

- The monthly "Wiadomości Lekarskie" Journal is the official journal of the Polish Medical Association. Original studies, review papers as well as case reports are published.
- 2. In 2022, the cost of publishing the manuscript is PLN 1,500 plus 23% VAT. From 2022, the publication costs for foreign authors amount to EUR 450, of which EUR 50 is payable with the submission of the article (includes the costs of review, anti-plagiarism system, English language level assessment, checking the compliance of the manuscript with the regulations of the publishing house, etc.), and the remaining EUR 400 after accepting the article for publication. Thanks to obtaining funding for authors from Ukraine, the cost of publication for Ukrainian authors is EUR 350. EUR 50 is payable together with the submission of the article, and EUR 300 after accepting the article for publication. The publisher issues invoices. If the first author of the manuscript is a member of the Editorial Board, we do not charge a fee for printing the manuscript. Membership of the Polish Medical Association with documented paid membership fees for the last 3 years is also the exempt from publication fee.
- Only papers in English are accepted for publication. The editors can help in finding the right person for translation or proofreading.
- 4. Papers should be sent to the editor via the editorial panel (Editorial System), available on the journal's website at https://www.wiadlek.pl. In order to submit an article, free registration in the system is necessary. After registration, the author should follow the instructions on the computer screen.
- 5. All editorial work is under control and using the editorial panel. This applies in particular to sending manuscripts, correspondence between the editor and author and the review process. In special cases, the editor may agree to contact outside the panel, especially in case of technical problems.
- 6. Acceptable formats for individual elements of the article are as follows:
 - A) Content of the article doc, docx, rtf, odt.
 - B) Tables doc, docx, rtf, odt
 - C) Figures JPG, GIF, TIF, PNG with a resolution of at least 300 dpi
 - D) Captions for figures and tables.
 - These elements are sent to the editor separately using the editorial panel. References and article metadata such as titles, keywords, abstracts etc. are supplemented by the author manually in the editorial panel in appropriate places.
- The volume of original papers including figures and references must not exceed 21,600 characters (12 pages of typescript), and review papers – up to 28,800 characters (16 pages).
- 8. The original manuscript should have the following structure: Introduction, Aims, Material and methods, Results, Discussion and Conclusions which cannot be a summary of the manuscript.
- 9. When using abbreviations, it is necessary to provide the full wording at the first time they are used.
- 10. In experimental manuscripts in which studies on humans or animals have been carried out, as well as in clinical studies, information about obtaining the consent of the Ethics Committee should be included.
- 11. The Editorial Board follow the principles contained in the Helsinki Declaration as well as in the Interdisciplinary Principles and Guidelines for the Use of Animals in Research, Testing and Education, published by the New York Academy of Sciences Ad Hoc Committee on Animal Research. All papers relating to animals or humans must comply with ethical principles set out by the Ethics Committee.
- 12. The abstract should contain 150-250 words. Abstracts of original, both clinical and experimental, papers should have the following structure: Aims, Material and methods, Results, Condusions. Do not use abbreviations in the title or the abstract. The abstract is pasted or rewritten by the authors into the appropriate field in the application form in the editorial panel.
- 13. Keywords (3-5) should be given according to MeSH (Medical Subject Headings Index Medicus catalogs http://www.nim.nih.gov.mesh/MBrower.html). Keywords cannot be a repetition of the title of the manuscript.
- 14. Illustrative material may be black and white or color photographs, clearly contrasting or drawings carefully made on a white background. With the exception of selected issues, the Journal is printed in shades of gray (black and white illustrations).
- 15. The content of the figures, if present (e.g. on the charts), should also be in English
- 16. Links to all tables and figures (round brackets) as well as references (square brackets) the author must place in the text of the article.

- 17. Only references to which the author refers in the text should be included in the list of references ordered by citation. There should be no more than 30 items in original papers and no more than 40 items in review papers. Each item should contain: last names of all authors, first letters of first names, the title of the manuscript, the abbreviation of the journal title (according to Index Medicus), year, number, start and end page. For book items, please provide: author's (authors') last name, first letter of the first name, chapter title, book title, publisher, place and year of publication. It is allowed to cite websites with the URL and date of use of the article, and if possible the last names of the authors. Each literature item should have a reference in the text of the manuscript placed in square brackets, e.g. [1], [3-6]. Items should be organized as presented in Annex 1 to these Regulations.
- 18. When submitting the article to the editor, the authors encloses a statement that the work was not published or submitted for publication in another journal and that they take full responsibility for its content, and the information that may indicate a conflict of interest, such as:
 - financial dependencies (employment, paid expertise, consulting, ownership of shares, fees),
 - 2. personal dependencies,
 - 3. academic and other competition that may affect the substantive side of the work,
 - sponsorship of all or part of the research at the stage of design, collection, analysis and interpretation of data, or report writing.
- 19. The authors in the editorial panel define their contribution to the formation of scientific work according to the following key:
 - A Work concept and design
 - B Data collection and analysis
 - C Responsibility for statistical analysis
 - D Writing the article
 - E Critical review
 - F Final approval of the article.
- 20. In the editorial panel along with the affiliation, the author also gives her or his ORCID number.
- 21. The Journal is reviewed in double, blind review mode. The submitted papers are evaluated by two independent reviewers and then qualified for publishing by the Editor-in-Chief. Reviews are anonymous. The authors receive critical reviews with a request to correct the manuscript or with a decision not to qualify it for publishing. The procedure for reviewing articles is in line with the recommendations of the Ministry of Science and Higher Education contained in the paper "Good practices in review procedures in science" (Warsaw 2011). Detailed rules for dealing with improper publishing practices are in line with COPE guidelines. The publishing review rules are in the Review Rules section.
- $22. \ Each \ manuscript \ is \ subject \ to \ verification \ in \ the \ anti-plagiarism \ system.$
- 23. Manuscripts are sent for the author's approval. The author's corrections should be sent within the time limit indicated in the system. No response within the given deadline is tantamount to the author's acceptance of the submitted material. In special cases, it is possible to set dates individually.
- Acceptance of the manuscript for publishing means the transfer of copyright to the Aluna Publishing House (Aluna Anna Łuczyńska, NIP 5251624918).
- 25. Articles published on-line and available in open access are published under Creative Common Attribution-Non Commercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0) allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.
- 26. The authors receive a free PDF of the issue in which their mansucript is enclosed, and on request a printed copy. The printed copy is sent to the address indicated by the authors as the correspondence address.
- 27. Manuscripts not concordant with the above instructions will be returned to be corrected.
- 28. The editors do not return papers which have not been commissioned.
- 29. The editors take no responsibility for the contents of the advertisements.

CONTENTS

U	RΙ	GI	N A	14	Δ	RT	161	I FS
.,		\ 11	1 U /	~ I	\boldsymbol{n}			

ORIGINAL ARTICLES Mimoza Canga, Irene Malagnino, Alketa Qafmolla, Edit Xhajanka, Vito A. Malagnino THE IMPACT OF THE DIABETES ON ORAL HEALTH — AN OBSERVATIONAL STUDY	753
'uliia A. Spivak, Nadiya O. Lyulka, Maksym M. Potyazhenko, Konstantin E. Vakulenko, Tetyana V. Dubrovinska BIOMARKER AND ECHOCARDIOGRAPHIC CHARACTERISTICS OF HEART FAILURE IN PATIENTS HAVING ACUTE MYOCARDIAL INFARCTION BIOMBINED WITH DIABETES MELLITUS OF TYPE 2	759
Maysaa Ghazi Jumaa PATTERN OF KRAS GENE EXPRESSION IN IRAQI WOMEN OVARIAN CARCINOMA	765
Petro Hasiuk, Olga Odzhubeiska, Anna Vorobets, Dmytro Korol`, Tetiana Dzetsiukh, Dmytro Kindiy OMPARATIVE ANALYSIS OF ENDURANCE CEMENTS FOR THE FIXATION OF NON-REMOVABLE ORTHOPEDIC CONSTRUCTIONS INDER THE ACTION OF CYCLIC COMPRESSION	770
lawraa A. M. Alkhuwailidy, Muhammad M. Alrufae DNA SEQUENCING OF NOVEL YEAST ISOLATED FROM BLOODSTREAM INFECTIONS IN AL-NAJAF PROVINCE	774
Oksana S. Kapustynska, Oleg O. Samchuk, Halyna Kovalchuk, Valeriy Vdovychenko, Oleg O. Kapustynskyi, Yevgen Sklyarov, Roksolana Yaremkevych EATURES OF COVID-19 PNEUMONIA DIAGNOSIS	781
ialy Naser Abbas, Hajer Alaa Obeid, Tahreer Shannan Alwan, Saif M. Hassan, Mahmood J. Jawad, Mohammed J. Jawad, Najah R. Hadi ORRELATION BETWEEN RS6265 SNP IN BDNF AND THE CONTEXT OF DIABETES TYPE II INVOLVEMENT IN IRAQI PATIENTS	787
Ruslana I. Falion, Yuliya I. Beketova, Yuriy O. Pospishil OMPREHENSIVE STUDY OF MANIFESTATIONS OF BRAIN TISSUE RESOLUTION IN CASE OF VARIOUS TYPES OF STROKE	791
Nhmed Zwain, Husham Qassim Mohammed EFFECT OF 20-HOUR FASTING AND LOW FAT DIET ON GHRELIN HORMONE, GLUCOSE LEVEL AND LIVER FUNCTION IN ALBINO RATS MALE	798
Aykola L. Ankin, Taras M. Petryk, Oleksander A.Radomski, Viktoria A. Ladyka, Iryna V. Kerechanyn, Larysa Y. Fedoniuk, Mykhailo P. Sas ONG-TERM RESULTS OF TREATING PATIENTS WITH OPEN FRACTURES OF LOW-LEG BONES	803
aha Ahmed Faraj TRESS LEVELS REGARDING COVID-19 PANDEMIC AMONG NURSING STUDENTS AT UNIVERSITY OF SULAIMANI, KURDISTAN REGION, IRAQ	809
ruriy Yashchenko, Dmytro Dyachuk, Iryna Zabolotna ROGNOSTIC CRITERIA OF EXCESSIVE BODY WEIGHT DEVELOPMENT AMONG SCHOOLCHILDREN BY THE RESULTS OF ANAMNESTIC SURVEY	814
Nahmood J. Jawad, Saif M. Hassan, Ahmed Kareem Obaid, Najah R. Hadi ROLE OF PRE-CESAREAN SECTION CEFOTAXIME IN AMELIORATED POST-CESAREAN COMPLICATION	818
Oleksandr V. Tsyhykalo, Nataliia B. Kuzniak, Serhij Yu. Palis, Roman R. Dmytrenko, Igor S. Makarchuk PECULIARITIES OF THE SOURCES OF ORIGIN AND MORPHOGENESIS OF THE HUMAN MANDIBLE	824
olataliia Raksha, Oleksandr Maievskyi, Iryna Dzevulska, Rostyslav Kaminsky, Inga Samborska, Olexiy Savchuk, Oleksandr Kovalchuk PROTEOLYTIC ACTIVITY IN THE HEART OF RATS WITH HYPERHOMOCYSTEINEMIA	831
Abdulkhaleq A Ali Ghalib Al-Naqeeb, Muna A Zedian, Anaam Mohammad MPACT OF POLYCYSTIC OVARIAN SYNDROME ON GENERAL HEALTH RELATED-QUALITY OF LIFE AMONG A SAMPLE AT "MATERNITY AND CHILDREN TEACHING HOSPITAL" IN DIWANIYAH CITY-IRAQ	836
Dleksandr Smiyan, Anastasiia Havrylenko, Andriy Loboda, Sergey Popov, Viktoriia Petrashenko, Kateryna Smiian, Tatiana Aleksakhina PECULIARITIES OF THYROID STATUS OF PRESCHOOL CHILDREN WITH ACUTE BRONCHITIS	842
etiana Hulai, Olena Kuzminska, Sergiy Omelchuk, Anatolii Hrynzovskyi, Tetiana Trunina, Anna V. Blagaia HYGIENIC ASSESSMENT OF THE INFLUENCE OF PESTICIDES ON THE FATTY COMPOSITION OF SUNFLOWER SEED LIPIDS	848

ORIGINAL ARTICLE

PECULIARITIES OF THE SOURCES OF ORIGIN AND MORPHOGENESIS OF THE HUMAN MANDIBLE

DOI: 10.36740/WLek202204114

Oleksandr V. Tsyhykalo, Nataliia B. Kuzniak, Serhij Yu. Palis, Roman R. Dmytrenko, Igor S. Makarchuk BUKOVINIAN STATE MEDICAL UNIVERSITY, CHERNIVTSI, UKRAINE

ABSTRACT

The aim: To determine the sources and terms of origin, developmental peculiarities and dynamics of ossification of the mandible during the prenatal period of human ontogenesis. **Materials and methods:** The research was carried out on the specimens of 30 embryos, 30 pre-fetuses and 60 human fetuses at the period from the 9th to the 12th weeks of the intrauterine development, which were studied by microscopic examination. Three-dimensional computer reconstructions of the human pre-fetal head were made.

Results: During the 7th week of development the maxillary processes maximum approach the lateral and medial nasal ones; in pre-fetuses 20,0 mm of PCL they join the frontal spindle forming the facial structures (upper jaw and lip, vestibule of the oral cavity, rudiments of dental laminas, and rudiments of dental buds in its distal portions). Osteogenous islets, rudiments of the mimic and masticatory muscles, blood vessels are formed. During the 8th week of development the osseous tissue of the mandible is formed, the alveolar processes are formed. The oral and nasal cavities are isolated in 9-10-week pre-fetuses, the mass of the osseous tissue increases in both jaws, the enamel organs are detached, the angles and rami formed by the hyaline cartilaginous tissue of the mandible are determined, the rudiments of the temporomandibular joints are already seen. During the 11th week of development the osseous base of both jaws become formed. Till the end of the 12th week the osseous tissue begins to replace the hyaline cartilage of the mandibular rami, and the articular heads are formed in the portion of their proximal ends.

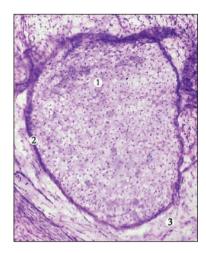
Conclusions: The mandible in its development is known to be characterized by intra-cartilaginous formation of the bone which starts from the ends of the cartilage gradually displaced by the osseous tissue. It is indicated that both jaws in pre-fetuses 37,0 and 42,0 mm of PCL are presented by the typical cartilaginous tissue, and in pre-fetuses 45,0-50,0 mm of PCL the osseous tissue is already available replacing the cartilaginous one.

KEY WORDS: mandible, morphogenesis, origin, ossification, ontogenesis

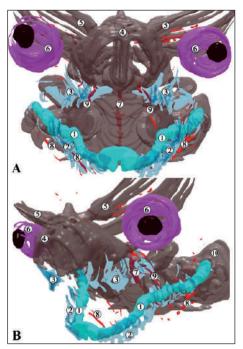
Wiad Lek. 2022;75(4 p1):824-830

INTRODUCTION

Learning the sources, terms, chronological sequence of morphological transformations, finding critical periods and developmental peculiarities of the anatomical structure of the stomatognathic system during the prenatal period of human ontogenesis are relevant areas of morphological studies promoting solution of an important medical-social issue improvement of the methods of prevention, early diagnostics and effective surgical correction of congenital defects and treatment of the acquired diseases of the human mandible. Morphological description of the maxillofacial structures and peculiarities of development of the mandible in particular, does not keep pace with up-to-date requirements of practical medicine. Usually to investigate these issues experimental models are used (laboratory animals) [1]. The methods of development and analysis of two-dimensional reconstructions are applied at the late stages of the craniofacial human development [2]. The data concerning regulations and peculiarities of mandibular morphogenesis during the prenatal period of human ontogenesis are insufficient. Certain fragments of research are known - those concerning morphogenesis of the mandible in human pre-fetuses [3]. Clear understanding of etiopathogenesis of congenital pathology of the human body organs and systems is based on comprehensive morphological examinations of peculiarities of the anatomical structures in the dynamics of the intrauterine development. Embryogenesis of the mandible differs by the formation of Meckel's cartilage followed by its involution and the processes of osteogenesis. Detection of chronological order of mandibular transformations at the early period of ontogenesis will promote development of morphological criteria of the norm, and improve diagnostic algorithms in interpretation of examination of human fetuses.


THE AIM

The aim was to determine the sources and terms of origin, developmental peculiarities and dynamics of ossification of the mandible during the prenatal period of human ontogenesis.


MATERIALS AND METHODS

The research was carried out on the specimens of 30 embryos, 30 pre-fetuses and 60 human fetuses at the Municipal Medical Institution «Chernivtsi Morbid Anatomy Bureau» according to the agreement on collaboration.

The investigations were performed keeping to the major regulations of the Resolution of the First National Congress

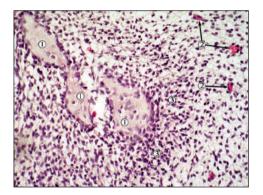


Fig. 1. Transverse section of Meckel's cartilage of the human embryo 13,5 mm of PCL. Staining with hematoxylin and eosin. Microphotograph. Magnification: 80x. Signs: 1 — Meckel's cartilage; 2 — perichondrium; 3 — mesenchyme.

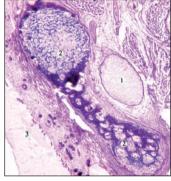


Fig. 2. Three-dimensional computer reconstruction of the human pre-fetal head 19,0 mm of PCL. A – anterior projection, B – left anterior-lateral projection. Magnification: 15x. Signs:

1 – Meckel's cartilage; 2 – foci of mandibular osteogenesis; 3 – foci of the maxillary osteogenesis; 4 – nasal capsule; 5 – rudiment of the cranial bones; 6 – eyeballs; 7 – basilar artery; 8 – inferior alveolar artery; 9 – maxillary artery; 10 – auricular cartilage.

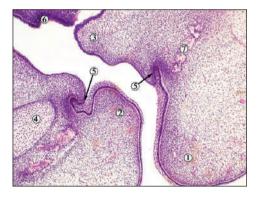


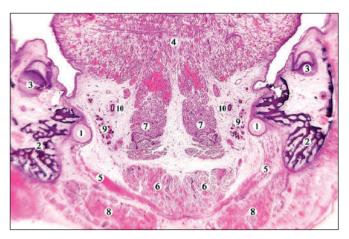
Fig. 3. Histological section of the pre-fetal mandible 18,0 mm of PCL. Staining with hematoxylin and eosin. Microphotograph. Magnification: 190x. Signs: 1 — osteogenous islets, 2 — condensed mesenchyme around the osteogenous islets, 3 — blood islets.

Fig. 4. Frontal section of the right mandible of the human pre-fetus 25,0 mm of PCL. Staining with hematoxylin and eosin. Microphotograph. Magnification: 50x. Signs:

1 – Meckel's cartilage; 2 – rudiment of the mandible; 3 – skin.

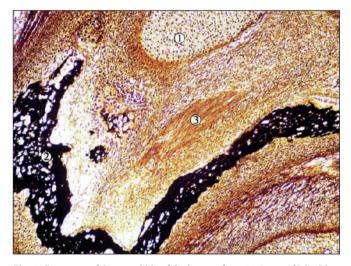
Fig. 5. Fragment of head section of the human pre-fetus 23,0 mm of PCL. The vestibule of the oral cavity lines the stratified epithelium. Staining with hematoxylin and eosin. Magnification: 30x. Signs:

1 – upper lip; 2 – lower lip; 3 – lateral palatine lamina; 4 – Meckel's cartilage; 5 – dental laminas; 6 – tongue; 7 – osteogenesis foci.


on Bioethics «General Ethic Principles of Experiments on Animals» (2001), ICH GCP (1996), the European Union Convention on Human Rights and Biomedicine (04.04.1997), and the European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes (18.03.1986), the Declaration of Helsinki on Ethical Principles for Medical Research Involving Human Subjects (1964-2008), EU Directives №609 (24.11.1986), the Orders of the Ministry of Health of Ukraine № 690 dated 23.09.2009, №944 dated 14.12.2009, № 616 dated 03.08.2012.

RESULTS

At the beginning of the 6th week of the intrauterine development (embryos 8,0-11,0 mm of the parieto-coccygeal


length (PCL)) the anlage of Meckel's cartilage is clearly determined. Its central part is formed by oval cells densely packed. These cells are visually smaller than those surrounding cartilages (Fig. 1). They present a distinctive center for the beginning of the cartilage formation. The perichondrium begins to form along the periphery of Meckel's cartilage at the end of the 6th week of the intrauterine development.

Osteogenous islets are found in embryos 10,0-11,0 mm of PCL (the middle of the 6th week of the intrauterine development). These are the areas of mesenchyme hardening located on both sides of the cartilaginous mandibular anlages. The cellular elements in their content are characterized by other forms of cells and nuclear-cytoplasmic correlation in them. The degree of intensity of the osteogenous anlages

Fig. 6. Frontal section of the mandible of the human pre-fetus 35,0 mm of PCL. Staining with hematoxylin and eosin. Microphotograph. Magnification: 50x. Signs:

1 – Meckel's cartilage; 2 – mandible rudiment; 3 – rudiments of teeth; 4 – tongue; 5 – mandibular-sublingual muscles; 6 – submental-sublingual muscles; 7 – submental-lingual muscles; 8 – anterior ventricles of the digastric muscles; 9 – sublingual glands; 10 – lingual arteries.

Fig. 7. Fragment of the mandible of the human fetus 55,0 mm of PCL. Silver impregnation. Microphotograph. Magnification.: 50x. Signs: 1 – Meckel's cartilage; 2 – osseous tissue trabecule; 3 – muscular elements.

decreases in the distal direction, and they are lacking in the areas of ventral extremities of Meckel's cartilage.

At the beginning of the pre-fetal period of the intrauterine development the submental nerve is detected close to the inferior border of Meckel's cartilage in the point of the primary ossification center of the mandible. Meckel's cartilages are delimited along the median line in the area of the chin by a thin mesenchyme layer.

At the end of the 7th week of intrauterine development (pre-fetuses 17,0-22,0 mm of PCL) the rudiment of the mandible is found externally from Meckel's cartilages occurring from the adjacent mesenchyme. A small concavity of the cartilage is seen into the center of the primary ossification of the mandible, followed by its ossification along the whole cartilage. At the end of the 7th week of intrauterine development mandible ossification occurs not only distally

from the primary center, but in the submental area as well. Due to this process Meckel's cartilage becomes surrounded by the bone along the anterior and posterior surfaces (Fig. 2). At the same time, the process of impression of the dental lamina in the space between the cartilage and anterior bony surface of the mandible is observed.

Special attention is drawn to the fact that the foci of osteogenesis localized externally from Meckel's cartilage in the shape of separate islets with clear signs of mineralization are found among the structures of the mandibular rudiments more clearly than in the objects of preliminary stages. This mineralization becomes especially visible at the end of the 7th week of the intrauterine development. Mineralized islets of the osseous tissue are surrounded by osteoblasts closely adjacent one to another. Their shape is various – from oval to trapezoid (Fig. 3).

Comparing the morphology of certain osteogenic islets our attention was drawn to the fact that they differed in the course of their development by their size, number of cells in the unit of volume of the intercellular matrix, degree of mineralization of osteogenesis centers, which is indicated by the difference of the tinctorial properties of their structures.

Mineralization of osteogenous islets was found to occur nonsynchronous repeating the dynamics of the processes of formation of the mandibular processes. We have found that those areas located closer to Meckel's cartilage are stained more intensively. We consider it is associated with reciprocal relations established between the structures of Meckel's cartilage participating in the formation of the mandible, and osteogenous components in the process of differentiation. Compact mesenchyme participating in osteogenesis is located around osteogenous islets.

The nuclei of osteoblasts are oval by shape. They are most often located eccentrically, dislocating to the apical pole, and the cytoplasm demonstrates pronounced basophilia in different degrees.

The cells located inside of the osteogenous islets become of an elongated stellate shape with various numbers of short processes. The cytoplasm of these cells is stained with the major dyes less intensively than in the area surrounding the islets of osteoblasts. They are located one by one in the so-called lacunas which outlines imitate the shape of cells. Due to the action of a fixing agent the sizes of cells become smaller than lacunar formations, therefore, light colorless cavities are found around them. Considering a specific shape of such cells isolated one from another by intercellular substance, they may be called osteocytes on their different stages of maturation.

Therefore, on the 7th week of the intrauterine development differentiation of structures participating in the formation of the maxillofacial apparatus occurs more rapidly in comparison with the previous stage of development. Osteogenesis is more active in the mandible. The vestibule of the oral cavity is formed, dental laminas are laid, and till the end of the 7th week dental germs are laid down. The mimic and masticatory muscles are differentiated.

During the 8th week of the intrauterine development (pre-fetuses 21,0-30,0 mm of PCL) further ossification of

the mandible occurs. It becomes visible in the area of its rami (Fig. 4).

Meckel's cartilage begins to lose its clear outlines and smooth surfaces, and the distance between the posterior extremities of cartilages enlarges. The cells of the cartilage become vacuolated and lose their nuclei. Ossification process spreads over all the areas of the mandible. Ossified rami of the mandible are the places for attachment of the masticatory muscles, they are located on both sides from the cartilage, and the base of the mandible surrounds it from below and from the side. The body of the mandible becomes U-shaped.

The islets of the osseous tissue are seen laterally from Meckel's cartilage. These islets in comparison with similar formations in the pre-fetuses of the 7th week of the intrauterine development become larger in size at the expense of their growth on the one hand, and on the other – at the expense of fusion between themselves. As a result, the space between osteogenous islets filled by mesenchyme becomes vividly smaller. The foci of ossification spread along Meckel's cartilages both in the proximal and distal directions making up the bony basis of the mandible, and the rudiments of alveolar processes in the shape of grooves open into the side of dental gums in particular.

Similar to the previous stage of development the mesenchyme around the cartilages is characterized by more compact location cell in it, and around the islets of the osseous tissue.

The foci of osteogenesis in the mandible are found in the form of separate osteogenous islets of various size (Fig. 5). They are oxyphil stained, and differentiated osteoblasts are localized along the periphery. Single osteocytes separated one from another by the intercellular matrix, are located in the middle of them. Some of the osteogenous islets are on the initial stages of osteogenesis in the form of osteoid masses surrounded by the osteogenous cells. Cells are still absent inside of such formations. Oxyphilia in the centers of osteogenesis of the maxillary rudiments is less prominent than in the osteogenous islets of the mandible. Thus, morphological peculiarities and tinctorial properties of the intercellular matrix of the osteogenous rudiments are indicative of the heterochronic bone formation in the mandible and maxilla.

During the 9th week of the intrauterine development osteogenesis is implemented actively, and due to this process their bony basis is formed. The osseous septa in the mandible which are located from both the ventral-lateral sides from Meckel's cartilage approach each other in the distal direction. Though in the area of the chin similar to the extremities of Meckel's cartilage they remain divided by the layer of the connective tissue presented by the cellular elements located compact. Due to appositional growth the amount of the osseous tissue in the maxillofacial apparatus increases considerably, and therefore it participates in the formation of the shape of the facial portion of the head.

Morphological structural changes of the osseous tissue are characterized by general biological regularities of osteogenesis in both jaws, but similar to the previous stage of development ossification in the mandible occurs quicker. Thus, if the maxilla does not have compact consolidation of the osseous islets, the latter practically form an integral osseous structure of a trabecular type in the mandible. At the same time, a common feature for both jaws is that the osseous tissue increases in them by means of an appositional way at the expense of active proliferation of osteoblasts located on the surface of the osseous tissue, and their secretion of the intercellular substance components in which they gradually are embedded.

Morphology of the osteoblasts located in the periphery of the osseous basis of the jaws is rather variable. First of all, they are different by their shape. They may be oval and amorphous. Basophilia of their cytoplasm is diverse, which is associated with a different degree of their differentiation. In the course of embedding the cells into the intercellular substance they become of an elongate shape.

At this stage of development the rates of histogenetic formation take place in the mandible. One of the signs is more accelerated osteogenesis in it. Stromal elements of the red bone marrow are formed in the centers of its osseous basis, while it is not observed in the upper jaw.

The alveolar processes in the form of osseous laminas connected close to the base are formed in both jaws.

The distal extremities of the osseous laminas form alveolar grooves (Fig. 6). And the thickness and degree of development of the external laminas are more expressed in comparison with the internal ones. The grooves are filled with mesenchyme inside. Bot typical mesenchyme cells and those on the stage of their differentiation are found in its loosely located cells. The structures of the alveolar nerves with basophil staining are clearly seen by their morphological peculiarities between the mesenchyme cells located in the alveolar grooves.

During the 10th week of the intrauterine development the rates of differentiation of the hard and soft tissues of the human maxillofacial apparatus continue to increase compared to the previous stage of development. The upper jaw is modeled by the osseous tissue islets fused between themselves, and the hard basis of the mandible together with the osseous tissue are still formed by Meckel's cartilage.

Osseous rudiments of both jaws are of a typical structure peculiar for the rough fibrous osseous tissue. The signs of periosteum formation are found in some places of their periphery, the external and internal layers can be seen in it. Fuchsine stained collagen fibers are found in the external layer, osteoblasts oriented by their long diameters parallel to the surface of the osseous base are located in the internal layer.

The osseous tissue matrix is unevenly contrasted. Its peripheral area manifests oxyphilic properties, and the central one is stained by the common dyes. Lacunas of various shapes are seen in it. Osteocytes with cytoplasmic processes emerging from them are located in the lacunas. As a result of fixing agent action their bodies become considerably smaller, therefore unstained cavities are visualized around cells. They give the osseous tissue a porous view.

Fusion of the distal extremities of Meckel's cartilage in the area of the chin at the end of the 10th week of the intrauterine

development is a specific feature of the mandible development. The osseous formations located in the ventral-lateral position are directed forward coming closer together and are connected along the midline by means of the retention connective tissue ligament, which morphologic features are similar to the 9-week pre-fetuses.

Formation of the alveolar process continues along the whole osseous basis. The borders of its walls are directed to the side of dental rudiments and envelope them Y-shaped. The alveolar groove is filled with mesenchyme containing blood vessels and big trunks of the alveolar nerves.

The rami of the mandible are more visualized at this stage of development. They emerge from its proximal portions at an obtuse angle and decline from Meckel's cartilage cranially into the direction of the temporal bones where the areas of mesenchyme cells condensation are determined. They are rudiments of the heads of the temporomandibular joints.

Contrary to the osseous basis of the mandibular body which is directly formed from the mesenchyme, its rami are formed by the hyaline cartilage which is displaced by the osseous tissue later. Its intercellular matrix manifests pronounced basophilia.

During the 11-12th weeks of the intrauterine development the rami of the mandible continue to form. First they are formed by the hyaline cartilage, but to the end of the 12th week of the intrauterine development narrow deposits of the osseous tissue appear around the cartilage which differ from it by tinctorial features.

Meckel's cartilage is located to the middle from the osseous basis of the mandibular body. Space between it and the osseous tissue is filled with mesenchyme. This space is dilated in the proximal portion and narrowed to minimum in the distal direction.

Argyrophilic fibers are found in the connective tissue structures of the maxillofacial apparatus with silver impregnation. The centers of ossification are impregnated more intensively in comparison with other structures. The intercellular matrix of Meckel's cartilage is non-reactive, but the structural elements of the muscular tissue are found clearly (Fig.7).

Formation of the mandibular rami continues in the 12-week pre-fetuses. These rami emerge from the angles of the mandible in the dorsal-cranial direction. The hard base of the rami consists of the hyaline cartilage in the form of continuous bundles with relatively smooth borders. An amorphous component of the hyaline cartilage forming the mandibular rami and the heads of the temporomandibular joints demonstrate sharply basophilic properties. As far as the hyaline cartilage is replaced by the osseous tissue, tinctorial properties change into oxyphilic ones, and as a result the border between them is clearly visualized in the form of a broken line. Formation of the heads of the temporomandibular joints continues at this stage of development.

DISCUSSION

We have found that at the end of the 5th week of embryogenesis isolation of Meckel's cartilage is observed in the

mandibular rudiments. The cartilage makes up their hard base. Parallel to this process the foci of mesenchyme condensation located in the lateral direction from the cartilage anlages are determined. From the topographic point of view these foci correspond to osteogenous islets which become more apparent during further stages of embryogenesis, that is, during the 6-7 weeks of development. In this respect the data of our study correspond to the data of other researchers [4].

The foci of direct osteogenesis in the upper jaw appear a week later after the fusion of the maxillary processes with the nasal and medial frontal processes. The researchers of this issue state [5] that the foci of the membranous ossification in both jaws are clearly determined in the embryos of the 8th week of development stained with alizarin and cleared in xylene, the parietal-coccygeal length of these embryos is 23,5 mm. At the same time, there are several ossification centers in the upper jaw which develop from the heterogeneous anlages. Thus, its cutting part is formed of the material of the nasal passages, and the rami originate from the maxillary spindles of the mandibular arch. The osseous tissue of these maxillary rami undergoes ossification first, while in the cutting portion this process occurs later.

According to the literary data [6], the human embryos 12,5-13,0 mm of PCL already have the primary palate. It is known to be resulted from the fusion of the distal extremities of the palatine processes [7]. Other sources state that this process occurs during the 8th week of embryogenesis. During the fetal period starting from the 9th week of development [8], the proximal portions of the palatine processes continue to approach each other. Their fusion is over at the end of the 9th week of the intrauterine development (33,0 mm of PCL) resulting in the formation of the secondary palate. These data are confirmed by our investigations as well. Still other sources admit that this process only starts at the 7-8 week and is over during the 10th week [9].

According to the data of the scientific sources [10], the rudiments of the maxillary sinuses in the form of small hollow formations begin to isolate during the 9th week of the intrauterine development. Our studies found that during this period of development the alveolar groove is formed in the mandible. The wall of the groove is formed by the two osseous laminas: internal and external. And the internal osseous lamina first is thinner in comparison with the external one. Free borders of the groove open into the side of enamel rudiments and involve them as Y-shaped. The alveolar groove is filled with poorly differentiated mesenchyme in which alveolar nerves pass and blood vessels are formed that gradually join together, and finally contact the rami of the major alveolar vessels. The process of the alveolar groove formation in the upper jaw is lagging behind in comparison with the mandible.

The osseous formations are the most extensional near the base of the alveolar groves of both jaws. Their amorphous part along the periphery is poorly oxyphile stained, while the central part of the alveolar crests demonstrates besophilia, and morphology of the cellular elements is similar to that of the chondrocytes.

Chondroid is supposed to be the periosteal osseous tissue in the process of formation, and the cells contained in it are similar to those of cartilage by their morphological characteristics. They are modified osteocytes possessing a convergent likelihood with chondrocytes. In the process of differentiation that makes up the basis of embryonic histogenesis the cellular elements of one and the same type are considered to be able to undergo a number of specific qualitative changes. As a result of these changes the cellular elements are specialized to perform certain functions [11].

Our studies demonstrated that in pre-fetuses 40,0 mm of PCL (the end of the 10^{th} – beginning of the 11^{th} weeks of development) the longitudinal fusion of Meckel's cartilage in the mandible results in maximum approach of its distal extremities and their fusion in the area of the chin.

During 11-12th weeks of the intrauterine development paired processes are formed in the area of the proximal ends of the mandibular rami directed upwards: ventral coronary and dorsal condylar ones.

At this period the structures forming articular heads appear on the ends of the condylar processes. Certain researchers state that isolation of these structures in the form of mesenchyme condensation occurs much earlier – during the 8th week of the intrauterine development. Their further formation continues during subsequent 10-12weeks in the form of rudiments of the hyaline cartilage which later will be replaced by the osseous tissue. Simultaneously with isolation of the articular heads the sockets of the joints begin to form as well. Their endesmal ossification continues as far as the articular heads are isolated. Meanwhile, even in 4-month human fetuses the temporomandibular joints are characterized by their incomplete structure. We did not find the formation of the temporomandibular joints during the 11-12th weeks of the intrauterine development either.

According to our data at this period the structure of the mandibular rami is mostly represented by the hyaline cartilage covered with a thin layer of the osseous tissue. The formation of the tissue occurs by means of appositional overlapping on the cartilaginous anlages modeling the rami. Therefore, the cartilage undergoes degenerative changes and is replaced by the osseous tissue.

Thus, contrary to the formation of the mandibular body, the formation of the osseous base of the mandibular rami results from indirect osteogenesis. And the data found in the course of our investigations correspond with the data of other researchers [12].

The rudiments of the mandibular rami in the distal direction join the osseous formations of its body. These formations from both sides envelope Meckel's cartilage in the form of an arch externally and approach one another in the area of the chin. Though, contrary to Meckel's cartilage they do not join together. Temporary compact connective tissue is formed between them at this period of time performing the role of a connective element at this stage of development. Further it will be replaced by the osseous tissue.

According to our findings, in the process of formation of the mandibular rami as far as their cartilaginous rudiments are replaced by the osseous tissue, the cartilaginous cells swell and enlarge in their sizes, their cytoplasm changes tinctorial properties becoming light and vacuolated. Glycogen is accumulated in it, and the nuclei undergo pyknotic changes and shrink. The major substance of the cartilage becomes harder and undergoes destruction. The mesenchyme grows into these places. A part of its cells are transformed into chondroclasts breaking down the cartilaginous tissue, and on its place mesenchyme cells are differentiated into the osteoblasts and osteocytes. Advance of this process is best observed in the areas of future articular heads.

The mandible in its development is known to be characterized by intra-cartilaginous formation of the bone which starts from the ends of the cartilage gradually displaced by the osseous tissue. It is indicated that [13] both jaws in pre-fetuses 37,0 and 42,0 mm of PCL are presented by the typical cartilaginous tissue, and in pre-fetuses 45,0-50,0 mm of PCL the osseous tissue is already available replacing the cartilaginous one. Although, we did not find enchondral osteogenesis of Meckel's cartilage in the objects examined.

CONCLUSIONS

- 1. During the 7th week of development (pre-fetuses 14,0-20,0 mm of PCL) the maxillary processes maximum approach the lateral and medial nasal ones; in pre-fetuses 20,0 mm of PCL they join the frontal spindle forming the facial structures (upper jaw and lip, vestibule of the oral cavity, rudiments of dental laminas, and rudiments of dental buds in its distal portions). Osteogenous islets, rudiments of the mimic and masticatory muscles, blood vessels are formed.
- 2. During the 8th week of development the osseous tissue of the mandible is formed, the alveolar processes are formed.
- 3. The oral and nasal cavities are isolated in 9-10-week pre-fetuses (33,0-40,0 mm of PCL), the mass of the osseous tissue increases in both jaws, the enamel organs are detached, the angles and rami formed by the hyaline cartilaginous tissue of the mandible are determined, the rudiments of the temporomandibular joints are already seen.
- 4. During the 11th week of development the osseous base of both jaws become formed. Till the end of the 12th week the osseous tissue begins to replace the hyaline cartilage of the mandibular rami, and the articular heads are formed in the portion of their proximal ends.

REFERENCES

- 1. Hutchinson E.F., Florentino G., Hoffman J., Kramer B. Micro-CT assessment of changes in the morphology and position of the immature mandibular canal during early growth. Surgical and Radiologic Anatomy. 2017; 39(2): 185-194.
- Minier M., Dedouit F., Maret D. et al. Fetal age estimation using MSCT scans of the mandible. International journal of legal medicine. 2014; 128(3): 493-499.

- 3. Brenner E. Human body preservation old and new techniques. Journal of anatomy. 2014; 224(3): 316–344.
- 4. Kuzniak N.B., Fedoniuk L.Ya., Pryshlyak A.M. et al. Morphogenesis of maxillary sinuses in infants, during early and first childhood. Wiadomości Lekarskie. 2020;73(2):254-258.
- 5. Tsyhykalo O.V., Popova I.S., Skrynchuk O.Ya. et al. Pequliarities of morphogenesys and topography of infrahyoid triangles in human prefetuses and fetuses. Wiadomości Lekarskie. 2021; 74(1):102-106.
- 6. Parada C., Chai Y. Mandible and tongue development. Current topics in developmental biology. 2015; 115: 31-58.
- 7. Masters M., Bruner E., Queer S. et al. Analysis of the volumetric relationship among human ocular, orbital and fronto-occipital cortical morphology. Journal of anatomy. 2015; 227(4): 460–473.
- 8. Tsyhykalo O.V., Oliinyk I.Yu., Kozariichuk N.Ya. et al. Peculiarities of the orbit morphogenesis at an early period of human ontogenesis. Wiadomości Lekarskie. 2021;74(2):179-183.
- 9. Godovanets O.I., Kitsak T.S., Vitkovsky O.O. et al. The Influence of Diffuse Nontoxic Goiter on the State of Protective Mechanisms of the Oral Cavity in Children. Journal of Medicine and Life. 2020; 13(1):21–25.
- 10. Petrenko V.M. Biologiya razvitiya organov: organizmennaya integratsiya i morfogenez [Developmental biology of organs: organism's integration and morphogenesis]. Bulletin of science and morphogenesis. 2016; 12:37–53. (in Russian).
- 11. Shapovalova Ye.Yu., Boyko T.A., Baranovskiy Yu.G. et al. Sravnitel'nyy analiz proliferatsii i gibeli kletok organov, proizvodnykh raznykh zarodyshevykh listkov, u cheloveka v protsesse rannego embrional'nogo gistogeneza. [Comparative analysis of cellular proliferation and death, derivatives of the different germ layers, in the human during early embryonal histogenesis]. Histogenesis and regeneration of the tissues. 2015; 56(4):212-217. (in Russian).
- 12. Fuakami K., Shiozaki K., Mishima A. et al. Detection of buccal perimandibular neurovascularisation associated with accessory foramina using limited cone-beam computed tomography and gross anatomy. Surgical and radiologic anatomy. 2011; 33(2): 141-146.
- 13. Barsukov A.N. Stanovleniye struktur tvordykh i myagkikh tkaney chelyustno-litsevogo apparata cheloveka na 8-oy nedele embrional'nogo razvitiya [Foundation of hard and palate structures of the human mandibular and face apparatus on the 8th week of embryonal development] Ukrainian Morphological Journal. 2010; 8(2): 8–10. (in Russian).

The work is a fragment of the research work of the Department of Histology, Cytology and Embryology of Bukovinian State Medical University "Structural and functional features of tissues and organs in ontogenesis, patterns of variant, constitutional, gender, age and comparative human morphology", state registration number 0121U110121.

ORCID and contributionship:

Olexandr V. Tsyhykalo: 0000-0003-2302-426X A,B,E Nataliia B. Kuzniak: 0000-0002-4020-7597 A,D,F Serhij Yu. Palis: 0000-0001-7543-6763 C,D Roman R. Dmytrenko: 0000-0002-1657-0927 C,E Ihor S. Makarchuk: 0000-0001-5209-7287 B,D

Conflict of interest:

The Authors declare no conflict of interest.

CORRESPONDING AUTHOR

Olexandr V. Tsyhykalo

Bukovinian State Medical University 4 Teatralva Sq. 58001 Chernivtsi, Ukraine tel: +380990737261

e-mail: tsyhykalo@icloud.com

Received: 05.06.2021 **Accepted:** 04.03.2022

A- Work concept and design, B- Data collection and analysis, C- Responsibility for statistical analysis,

D – Writing the article, **E** – Critical review, **F** – Final approval of the article

