4.9. System of Mueller matrix polarization correlometry of biological polycrystalline layers

V.O. Ushenko, O.Vanchuliak, M.Yu. Sakhnovskiy, O.V. Dubolazov, P. Grygoryshyn, I.V. Soltys, O.V. Olar

4.9.1. Introduction

The theoretical basics of the Mueller-matrix polarimetry of optically anisotropic biological layers are fully described in [1-9]. The development of these techniques has become the methods of laser polarimetry [10-16]. A new step in the clinical applications of Mueller-matrix formalism was using of azimuthal polarization invariants to describe differentiations in the correlation manifestations of changes in phase shifts between the orthogonal components of the amplitude of laser radiation.

- This research is focused on the further development of azimuthally invariant Mueller-matrix mapping of the histological sections of myocardium tissue in tasks of differentiating necrotic changes in fibrillar networks. The relevance of this study is substantiated in [17-23].

4.9.2. Brief theoretical background

The basis of our work is based on modeling representations of the phase (circular and linear birefringence) and amplitude (circular and linear dichroism) of anisotropy of the polycrystalline structure of the biological layers.
To describe the polarization-correlation manifestations of the optical anisotropy of biological tissues we propose the following Mueller-matrix invariants:

- Elements of Mueller Matrix

\[M_{11}; M_{14}; M_{41}; M_{44}. \]

(4.9.1)

- Combinations of Mueller matrix elements

\[\Sigma \equiv (M_{22} + M_{33})_i; \]

(4.9.2)

\[\Xi \equiv (M_{23} - M_{12}). \]

(4.9.3)

- Lengths of mathematical vectors

\[
\begin{align*}
A_h &= \sqrt{M_{12}^2 + M_{13}^2}; \\
A_v &= \sqrt{M_{21}^2 + M_{31}^2}; \\
B_h &= \sqrt{M_{42}^2 + M_{43}^2}; \\
B_v &= \sqrt{M_{24}^2 + M_{34}^2}.
\end{align*}
\]

(4.9.4)

- Angles

\[\cos(B_h, B_v) = -\frac{\sqrt{(M_{42}^2 + M_{43}^2)}}{\sqrt{(M_{24}^2 + M_{34}^2)}}. \]

(4.9.5)
Using the set of MMI will provide conditions for using of the methods of experimentally reconstruction of Mueller-matrix mapping on serial, screening studies of biological tissues samples of human organs in various biomedical diagnostic tasks.

4.9.3. The technique of experiment

The measurements of coordinate distributions of Mueller-matrix elements (distribution of values in the film plane of bile) were performed in the setup of the conventional Stokes-polarimeter [10].

A set of statistical moments of the 1st-4th orders characterizing distributions q was calculated using the algorithms

\[
\begin{align*}
\{A_h\} &= \frac{1}{\sqrt{M_{12}^2 + M_{13}^2}} \left(M_{12}^2 - M_{13}^2 \right); \\
\{A_v\} &= \frac{1}{\sqrt{M_{21}^2 + M_{31}^2}} \left(M_{21}^2 - M_{31}^2 \right); \\
\{B_h\} &= \frac{1}{\sqrt{M_{42}^2 + M_{43}^2}} \left(M_{42}^2 - M_{43}^2 \right); \\
\{B_v\} &= \frac{1}{\sqrt{M_{24}^2 + M_{34}^2}} \left(M_{24}^2 - M_{34}^2 \right). \\
\end{align*}
\]

(4.9.6)

\[
G = \sqrt{\left(M_{22} - M_{33} \right)^2 + \left(M_{23} - M_{32} \right)^2}.
\]

(4.9.7)

\[
\begin{align*}
Z_1 &= \frac{1}{N} \sum_{j=1}^{N} |q_j|; \\
Z_2 &= \frac{1}{N} \sum_{j=1}^{N} (q_j - Z_1)^2; \\
Z_3 &= \frac{1}{Z_2^3} \frac{1}{N} \sum_{j=1}^{N} (q_j - Z_1)^3; \\
Z_4 &= \frac{1}{Z_2^4} \frac{1}{N} \sum_{j=1}^{N} (q_j - Z_1)^4. \\
\end{align*}
\]

(4.9.8)

N - the number of pixels of CCD-camera.
4.9.4. Azimuthally-invariant Muller matrix images

In fig. 4.9.1 and fig. 4.9.2 are shown maps and histograms of distribution of the following values of MMI:

- matrix element (fragments (1), (2), ratio (4.9.1));
- combinations of matrix elements (fragments (3) - (8), ratio (4.9.2) - (4.9.3));
- lengths of matrix vectors (fragments (9) - (16), ratio (4.9.4));
- matrix angles (fragments (17) - (18), relations (4.9.5) - (4.9.7)),

which characterize the phase anisotropy (linear and circular birefringence) of the partially depolarizing layers of the histological sections of the myocardium tissue (Fig. 4.9.1) and the brain (Fig. 4.9.2).

The purpose of azimuthally invariant mapping of polycrystalline networks of optically thick biological layers was to determine the most sensitive to changes in the phase anisotropy of Muller-matrix invariants, as well as the corresponding values of the set of statistical moments of the 1st-4th orders corresponding to their distributions, - Table 4.9.1 (histological section of myocardium tissue).
Fig. 4.9.1. Maps and histograms for the distribution of MMI of the optically-thick histological sections of myocardium tissue
Fig. 4.9.2. Maps and histograms for the distribution of MMI of the optically-thick histological sections of brain tissue.

Analysis of the results of azimuthally invariant Mueller-matrix mapping of optically thick, partially depolarizing layers of different morphological structures biological tissues revealed the sensitivity of MMI to the distribution of linear and circular birefringence of biological tissues of various organs ("matrix vectors" A_x, A_y, B_x, "combinations of matrix
elements” $M_{22} + M_{33}; M_{23} - M_{32}$; "matrix elements" M_{44}; "matrix angles" - $\{B_i\}; G$). Quantitatively, this fact illustrates a sufficiently wide range of non-zero (except for a "combination of matrix elements") values of all MMI-maps which are shown on fig. 4.9.1 and fig. 4.9.2.

Table 4.9.1. Statistical moments of the 1st - 4th orders, which characterize the distributions of the mean values of optically-thick histological section of myocardium tissue

<table>
<thead>
<tr>
<th>Z_i</th>
<th>A_h</th>
<th>A_z</th>
<th>B_h</th>
<th>ΔM</th>
<th>$M_{22} + M_{33}$</th>
<th>$M_{23} - M_{32}$</th>
<th>M_{44}</th>
<th>${B_i}$</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z_1</td>
<td>0.04</td>
<td>0.05</td>
<td>0.04</td>
<td>0.001</td>
<td>0.11</td>
<td>0.06</td>
<td>0.13</td>
<td>0.04</td>
<td>89.63</td>
</tr>
<tr>
<td>Z_2</td>
<td>0.08</td>
<td>0.07</td>
<td>0.05</td>
<td>0.001</td>
<td>0.16</td>
<td>0.12</td>
<td>0.12</td>
<td>0.07</td>
<td>63.88</td>
</tr>
<tr>
<td>Z_3</td>
<td>4.06</td>
<td>5.11</td>
<td>3.11</td>
<td>148</td>
<td>2.77</td>
<td>3.14</td>
<td>0.93</td>
<td>3.56</td>
<td>11.27</td>
</tr>
<tr>
<td>Z_4</td>
<td>21.5</td>
<td>11.03</td>
<td>12.6</td>
<td>1239</td>
<td>7.83</td>
<td>13.5</td>
<td>2.57</td>
<td>18.3</td>
<td>120.9</td>
</tr>
</tbody>
</table>

4.9.5. Conclusions
1. The Mueller-matrix model of generalized phase and amplitude anisotropy of polycrystalline networks of biological tissues of human organs is elaborated.
2. It has been proposed the new method of mapping of histological sections of biological tissues by means of measuring the coordinate distributions of values of the set of Mueller-matrix invariants.
3. The Muller-matrix invariants most sensitive to the peculiarities of optical anisotropy of myocardial fibrillar networks have been identified.

References

25. van Beek D., Funaki B. “Hemorrhageas a complication of percutaneous liver biopsy,” Semin Intervent Radiol. Dec 30(4), 413-6 (2013)

