Please use this identifier to cite or link to this item: http://dspace.bsmu.edu.ua:8080/xmlui/handle/123456789/21435
Title: More on the extension of linear operators on riesz spaces
Authors: Vlad, H.I.
Issue Date: 2023
Publisher: Буковинський державний медичний університет
Abstract: The classical Kantorovich theorem asserts the existence and uniqueness of a linear extension of a positive additive mapping, defined on the positive cone E+ of a Riesz space E taking values in an Archimedean Riesz space F, to the entire space E. We prove that, if E has the principal projection property and f is Dedekind σ-complete then for every e ∈ E+ every positive finitely additive f-valued measure defined on the Boolean algebra Ϝe of fragments of c has a unique positive linear extension to the ideal Ee of E generated by e. If, moreover, the measure is τ-continuous then the linear extension is order continuous.
URI: http://dspace.bsmu.edu.ua:8080/xmlui/handle/123456789/21435
Appears in Collections:СЕКЦІЯ 22. Фізичні дослідження в медицині

Files in This Item:
File Description SizeFormat 
Vlad_429.pdf347.91 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.