Please use this identifier to cite or link to this item:
http://dspace.bsmu.edu.ua:8080/xmlui/handle/123456789/21435
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Vlad, H.I. | en |
dc.coverage.temporal | 06, 08 лютого 2023р. | uk_UA |
dc.date.accessioned | 2023-10-18T08:04:11Z | - |
dc.date.available | 2023-10-18T08:04:11Z | - |
dc.date.issued | 2023 | - |
dc.identifier.uri | http://dspace.bsmu.edu.ua:8080/xmlui/handle/123456789/21435 | - |
dc.description.abstract | The classical Kantorovich theorem asserts the existence and uniqueness of a linear extension of a positive additive mapping, defined on the positive cone E+ of a Riesz space E taking values in an Archimedean Riesz space F, to the entire space E. We prove that, if E has the principal projection property and f is Dedekind σ-complete then for every e ∈ E+ every positive finitely additive f-valued measure defined on the Boolean algebra Ϝe of fragments of c has a unique positive linear extension to the ideal Ee of E generated by e. If, moreover, the measure is τ-continuous then the linear extension is order continuous. | en |
dc.format.extent | c. 429 | uk_UA |
dc.language.iso | en | uk_UA |
dc.publisher | Буковинський державний медичний університет | uk_UA |
dc.title | More on the extension of linear operators on riesz spaces | en |
dc.type | Thesis | uk_UA |
dc.event.place | Чернівці | uk_UA |
dc.source.name | Збірник матеріалів підсумкової 104-ї науково-практичної конференції з міжнародною участю професорсько-викладацького персоналу Буковинського державного медичного університету | uk_UA |
Appears in Collections: | СЕКЦІЯ 22. Фізичні дослідження в медицині |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Vlad_429.pdf | 347.91 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.