

ЭНДОТЕЛИАЛЬНАЯ ДИСФУНКЦИЯ И ЕЕ КОРРЕКЦИЯ У БОЛЬНЫХ ГАСТРОЭЗОФАГЕАЛЬНОЙ РЕФЛЮКСНОЙ БОЛЕЗНЬЮ В СОЧЕТАНИИ С САХАРНЫМ ДИАБЕТОМ 2 ТИПА

Федив Александр Иванович

д-р мед. наук, проф. Буковинского государственного медицинского университета, Украина, г. Черновцы *E-mail: <u>olivfed@mail.ru</u>*

Коханюк Юлия Валерьевна

аспирант Буковинского государственного медицинского университета, Украина, г. Черновцы Е-mail: ursaki08@mail.ru

Гингуляк Мария Александровна

заведующая отделением функциональной диагностики Черновицкого областного медицинского диагностического центра, Украина, г. Черновцы E-mail: doctor.ursaki@mail.ru

ENDOTHELIAL DYSFUNCTION AND ITS CORRECTION IN PATIENTS WITH GASTROESOPHAGEAL REFLUX DISEASE, COMBINED WITH DIABETES MELLITUS TYPE 2

Fediv Alexander

Doctor of Medicine, Professor Bukovina State Medical University, Ukraine, Chernivtsi

Kohanyuk Julia

graduate student Bukovina State Medical University, Ukraine, Chernivtsi

Gingulyak Maria

head of the department of functional diagnostics of the Chernivtsi regional medical diagnostic center, Ukraine, Chernivtsi

Федив А.И., Коханюк Ю.В., Гингуляк М.А. Эндотелиальная дисфункция и ее коррекция у больных гастроэзофагеальной рефлюксной болезнью в сочетании с сахарным дибетом 2 типа // Universum: Медицина и фармакология : электрон. научн. журн. 2014. № 2 (3) . URL: http://7universum.com/ru/med/archive/item/981

АННОТАЦИЯ

Приведены результаты оценки изменений показателей эндотелиальной функции у больных гастроэзофагеальной рефлюксной болезнью, которая сочетается с сахарным диабетом 2 типа, в динамике лечения.

ABSTRACT

The article evaluated changes of indicators of the endothelial function in patients with gastroesophageal reflux disease, associated with diabetes mellitus type 2, during the treatment.

Ключевые слова: гастроэзофагеальная рефлюксная болезнь, сахарный диабет 2 типа, «Пепсан», «Кверцетин», эндотелиальная дисфункция.

Keywords: gastroesophageal reflux disease, diabetes mellitus type 2, pepsan, quercetin, endothelial dysfunction.

Введение. В настоящее время активно изучаются все функции эндотелия сосудов. Это обусловлено тем, что эндотелий поддерживает баланс между продукцией вазодилятирующих, ангиопротективных, ангиопролиферативных факторов с одной стороны и вазоконстрикторных, протромботических, пролиферативных факторов — с другой. Эндотелиальна дисфункция (ЭД) дисбаланс между данными факторами, поддерживающими гомеостаз сосудистой стенки и регулирующими многочисленные функции эндотелия. ЭД проявляется нарушением эндотелийзависимой вазодилатации (ЭЗВД), которая возникает в результате уменьшения синтеза оксида азота (NO) при сохраненной продукции эндотелиальных вазоконстрикторов и эндотелийнезависимой вазодилатации (ЭНВД) [3; 5; 6].

Причинами ЭД могут быть различные факторы: свободнорадикальное повреждение, гипергликемия, дислипопротеинемия, действие цитокинов, гипоксия тканей и др. Поэтому и считается, что ЭД — один из механизмов развития некоторых проявлений сахарного диабета (СД) и одна из причин сопутствующих сосудистых осложнений данного заболевания [1; 2; 7].

Предвидя, что повышение концентрации активных форм кислорода (АКФ) и усиления вследствие этого процессов перекисного окисления липидов (ПОЛ) приводит к изменению структурно-функциональных свойств клеток, в том числе и эпителиальных, что в дальнейшем способствует возникновению ЭД, необходимо модифицировать терапию ГЭРБ у больных СД 2 типа. В связи с этим актуальным является изучение влияния «Пепсана» и «Кверцетина» на ЭД, так как известно, что гвайазулен, действующий компонент «Пепсана», уменьшает образование АКФ и подавляет ПОЛ [4; 5; 7].

Цель исследования: оценить влияние «Пепсана» и «Кверцетина» в комплексной терапии на параметры, характеризующие функциональное состояние эндотелия у больных с ГЭРБ в сочетании с СД 2 типа.

Материал и методы исследования. Обследовано 27 больных с ГЭРБ, в сочетании с СД 2 типа (10 мужчин и 17 женщин) в возрасте от 43 до 70 лет. 7 практически здоровых лиц (ПЗЛ), репрезентативных по возрасту и полу, составили контрольную группу.

Больные с эрозивной формой ГЭРБ (ЭГЭРБ) и СД 2 типа, которые принимали базисную терапию ГЭРБ (ингибитор протонной помпи (ИПП) — омепразол в дозе 20 мг/сут), сформировали 1-ю группу обследуемых (7 человек), пациенты с ЭГЭРБ в сочетании с СД 2 типа, которые дополнительно к стандартному лечению получали «Пепсан» в дозе 10 г три раза в сутки и «Кверцетин» по 0,04 г на ½ стакана воды 2 раза в день за 30 минут до еды — 2-ю группу (7 человек), в 3-ю группу вошли обследованные на неэрозивную ГЭРБ (НГЭРБ) и СД 2 типа, которым была назначена базисная терапия (6 больных), а в 4-ю — пациенты с НГЭРБ, которые дополнительно к стандартному лечению получали «Пепсан» в и «Кверцетин» в тех же дозах (7 человек). Продолжительность лечения во всех группах составила 28 дней.

Функциональное состояние эндотелия изучали по количеству в крови эндотелина-1 (ЭТ-1) реактивами "Bio Tech Lab-S" (Австрия) и содержанию в крови конечных метаболитов NO (нитритов, нитратов) по методу L.C. Green

с соавт. Сосудодвигательную функцию плечевой артерии (ПА) определяли путем дуплексного ультразвукового сканирования, применяя пробу с реактивной гиперемией (РГ) (эндотелийзависимая вазодилатация — ЭЗВД) по D. Celermajer и соавт. и пробу с нитроглицерином (эндотелийнезависимая вазодилатация — ЕНВД).

Данные обрабатывали с помощью программы "Statistica v.6.0" методами непараметрической статистики (критерий Манна-Уитни).

Результаты исследования и их обсуждение.

Исследование показало (таблицы 1, 2), что чувствительность эндотелия к напряжению сдвига при РГ (K_1) у больных с ЭГЭРБ и СД 2 типа достоверно снижалась в 4,7 раза (р<0,01), а у обследованных с НГЭРБ и СД 2 типа в 2,7 раза (р<0,05), по сравнению с контрольной группой, что может быть обусловлено изменениями вегетативной иннервации, связанной с поражением сенсорных и моторных нервных волокон при СД 2 типа в условиях оксидативного стресса [1]. Чувствительность ПА к напряжению сдвига при пробе с нитроглицерином (K_2) также снижалась, а именно: у больных с ЭГЭРБ была ниже в 2,7 раза (р<0,05), а у пациентов с НГЭРБ — в 2,1 раза по сравнению с группой ПЗЛ (р>0,05). Также было выявлено понижение ЭЗВД и ЭНВД при ГЭРБ и СД 2 типа, а именно: у обследованных с ЭГЭРБ — на 15 % и 17,9 %, у пациентов с НГЭРБ — на 13,3 % и 13 % по сравнению с такими же у ПЗЛ (р<0,01).

Изучение ЭД у больных через месяц после начала лечения показало (таблицы 1, 2), что под действием базисной терапии с добавлением «Пепсана» и «Кверцетина» происходит существенная коррекция потокозависимой дилатации, что проявлялось повышением напряжения смещения на эндотелий, чувствительности ПА к напряжению сдвига при РГ и ЭЗВД.

У 28,6 % пациентов 1-й группы во время пробы с РГ до лечения установили патологическую вазоконстрикцию, у 42,9 % — неадекватную вазодилатацию. После проведенного лечения только у 57,1 % больных наблюдалась недостаточная ЭЗВД без парадоксальной реакции. У 57,1 %

обследованных 2-й группы до лечения была неадекватная вазодилатация, а у 42,9 % лиц наблюдали патологическую вазоконстрикцию. Добавление «Пепсана» и «Кверцетина» к базисному лечению сопровождалось нормализацией функции эндотелия, т. е. у 100 % пациентов была выявлена адекватная

Таблица 1. Показатели функционального состояния эндотелия у больных с эрозивной гастроэзофагеальной рефлюксной болезнью в сочетании с сахарным диабетом 2 типа, в динамике лечения (М±т)

	Группы обследованных						
Показатели	Базисная терапия (группа 1), n=7		Базисная терапия + «Пепсан» + «Кверцетин» (группа 2), n=7		ПЗЛ (группа 5)		
	до леч.	после леч.	до леч.	после леч.	n = 7		
D ₀ , см	0,44±0,01 * p<0,01	0,43±0,01 * p<0,01	0,46±0,01 * p<0,01	0,42±0,01 * p<0,01/ ** p<0,01	0,36±0,01		
Vo, cm/c	79,04±4,16	78,00±3,38	78,29±5,88	76,29±3,01	76,56±4,91		
τ_0 дин/см ²	36,14±2,28 * p<0,05	36,70±1,52	34,01±2,42 * p<0,05	36,14±1,61	42,54±3,18		
D ₁ , см	0,46±0,02	0,47±0,01	0,47±0,01 * p<0,05	0,48±0,01 * p<0,01	0,44±0,01		
V ₁ , cm/c	97,71±4,07 * p<0,01	110,00±3,78 * p<0,01/ ** p<0,05	93,43±6,60 * p<0,01	114,29±3,39 * p<0,01/ ** p<0,05	130,71±2,65		
т ₁ дин/см ²	43,13±2,05 * p<0,01	47,24±1,88 * p<0,01	39,97±2,86 * p<0,01	47,26±1,63 * p<0,01/ ** p<0,05	59,86±2,17		
D ₂ , см	0,47±0,02	0,49±0,01	0,49±0,02	0,51±0,01 * p<0,05	0,47±0,01		
V ₂ , cm/c	95,43±4,69 * p<0,01	102,57±4,25 * p<0,05	90,00±4,58 * p<0,01	110,14±4,12 ** p<0,01	115,71±4,25		
τ_2 дин/см ²	41,20±2,94 * p<0,05	41,99±1,49 * p<0,01	37,43±2,36 * p<0,01	43,61±1,72 * p<0,05	49,80±2,56		
K ₁ y.o.	0,12±0,08 * p<0,01	0,35±0,02 * p<0,01/ # p<0,01	0,12±0,09 * p<0,01	0,48±0,03 ** p<0,01	0,56±0,08		
K ₂ y.o.	0,91±0,20 * p<0,05	1,04±0,12 * p<0,05	0,65±0,29 * p<0,05	1,03±0,14 * p<0,05	2,10±0,45		
ЭЗВД ПА, %	103,70±2,95 * p<0,01	109,80±0,50 * p<0,01/ # p<0,01	101,86±1,67 * p<0,01	114,53±0,56 * p<0,01/ ** p<0,01	120,87±1,50		
ЭНВД ПА, %	106,83±4,20 * p<0,01	114,87±1,47 * p<0,01/ ** p<0,01 # p<0,05	105,46±3,51 * p<0,01	119,60±0,61 * p<0,01/ ** p<0,01	129,27±2,61		

ЭТ-1 фмоль/мл	1,94±0,11 * p<0,01	1,67±0,13 * p<0,01/ # p<0,01	1,97±0,15 * p<0,01	0,98±0,08 * p<0,01/ ** p<0,01	0,18±0,04
Стаб. мет. NO	9,07±0,98	11,07±0,90	8,31±0,57	17,50±0,80	23,71±1,57
(NO_2, NO_3)	* p<0,01	* p<0,01/	* p<0,01	* p<0,01/	
мкмоль/л		# p<0,01		** p<0,01	

Примечания:

- * разница достоверна относительно показателей у ПЗЛ;
- ** разница достоверна по сравнению с показателем до лечения;
- # разница достоверна по сравнению с показателем у больных, где к базисному лечению добавлены «Пепсан» и «Кверцетин».

вазодилатация. Проведение теста Целеймайера-Соренсена до лечения выявило нарушение сосудодвигательной функции эндотелия у 66,7 % больных, из них у 25 % — парадоксальную вазоконстрикцию и адекватную вазодилатацию, у 33,3 % пациентов 3-й группы. Лечение ингибитором протонной помпы способствовало нормализации ЭЗВД. У 57,1 % больных 4-й группы до лечения наблюдалась неадекватная вазодилатация, у 14,3 % — парадоксальная вазоконстрикция и у 28,6 % — адекватная вазодилатация. Комплексное лечение с привлечением «Пепсана» и «Кверцетина» у больных НГЭРБ и СД 2 типа способствовало также нормализации ЭЗВД.

ЭНВД также улучшалась в случае, когда на фоне базисной терапии назначались «Пепсан» и «Кверцетин». Так, у 57,1 % больных 2-й группы до лечения установлена нарушенная вазодилатация И 28,6 % патологическая вазоконстрикция. После комбинированного лечения только у 42,9 % лиц наблюдали недостаточную ЭНВД без парадоксальной реакции. У 71,4 % пациентов 1-й группы при проведении пробы с нитроглицерином до лечения была нарушена вазодилатация из них у 14,3 % — патологическая вазоконстрикция. В результате проведенного лечения неадекватная вазодилатация была обнаружена у 71,4 % без парадоксальной реакции.

В настоящее время доказано, что ведущую роль в возникновении эндотелиальной дисфункции играет дисбаланс между вазодилататорами и вазоконстрикторами в сторону последних и развития вазоконстрикции [5; 6]. Так, по результатам исследования (таблицы 1, 2) во всех обследуемых группах

Показатели функционального состояния эндотелия у больных с неэрозивной гастроэзофагеальной рефлюксной болезнью в сочетании с сахарным диабетом 2 типа, в динамике лечения, (М±m)

	Группы обследованных						
Показатели	Базисная терапия (группа 3), n=6		Базисная терапия + «Пепсан» + «Кверцетин» (группа 4), n=7		ПЗЛ (группа 5) n = 7		
	до леч.	после леч.	до леч.	после леч.	11 – 7		
D ₀ , см	0,41±0,01 * p<0,01	0,40±0,01 * p<0,01	0,42±0,02 * p<0,01	0,38±0,01 * p<0,05	0,36±0,01		
Vo, cm/c	77,38±5,01	76,00±2,92	83,21±6,53	79,19±2,43	76,56±4,91		
τ_0 дин/см ²	37,80±2,99	37,93±1,76	41,27±4,58	41,30±1,57	42,54±3,18		
D ₁ , см	0,44±0,02	0,46±0,01	0,43±0,02	0,45±0,01 ** p<0,05	0,44±0,01		
V ₁ , cm/c	117,00±4,58 * p<0,05	122,33±2,33	119,00±5,71	126,86±2,42	130,71±2,65		
τ_1 дин/см ²	53,77±3,14	53,18±1,68 * p<0,05	56,66±3,89	56,17±1,39	59,86±2,17		
D ₂ , см	0,47±0,02	0,49±0,01	0,45±0,02	0,48±0,01 ** p<0,05	0,47±0,01		
V ₂ , cm/c	106,33±4,99	111,67±3,07	106,86±6,89	115,00±2,52	115,71±4,25		
τ ₂ дин/см ²	45,42±3,25	45,67±1,69	47,44±3,54	48,01±1,43	49,80±2,56		
К ₁ у.о.	0,17±0,08 * p<0,01	0,37±0,02 * p<0,05/ ** p<0,05/ # p<0,01	0,25±0,11 * p<0,05	0,50±0,03 **p<0,05	0,56±0,08		
К ₂ у.о.	0,94±0,24	1,08±0,07 # p<0,01	1,02±0,33	1,55±0,09	2,10±0,45		
ЭЗВД ПА, %	106,65±3,65 * p<0,01	114,88±1,12 * p<0,05 ** p<0,05	103,36±4,56 * p<0,01	117,80±1,02 * p<0,05 ** p<0,01	120,87±1,50		
ЭНВД ПА, %	115,23±4,60 * p<0,05	122,02±0,94 * p<0,01	110,20±4,76 * p<0,01	124,93±1,29 ** p<0,01	129,27±2,61		
ЭТ-1 фмоль/мл	0,99±0,12 * p<0,01	0,81±0,11 * p<0,01/ # p<0,05	0,97±0,10 * p<0,01	0,45±0,10 * p<0,05/ ** p<0,01	0,18±0,04		
Стаб. мет. NO (NO ₂ , NO ₃) мкмоль/л	13,56±1,56 * p<0,01	15,06±1,36 * p<0,01/ # p<0,05	14,40±1,21 * p<0,01	20,15±1,39 ** p<0,01	23,71±1,57		

Примечания:

^{*—} разница достоверна относительно показателей у ПЗЛ;

^{** —} разница достоверна по сравнению с показателем до лечения;

^{# —} разница достоверна по сравнению с показателем у больных, где к базисному лечению добавлены «Пепсан» и «Кверцетин».

выявлен достоверный рост по сравнению с контролем уровня ЭТ-1, а именно: у больных с ЭГЭРБ данный показатель в 10,9 раз превышал показатели контрольной группы (p<0,01), у пациентов с НГЭРБ — в 5,4 раза (p<0,01). Также у пациентов с ЭГЭРБ и НГЭРБ и СД 2 типа было выявлено статистически достоверное снижение содержания в крови стабильных метаболитов NO, а именно: на 63,4 % и 40,8 % (p<0,01) при сравнении показателей у здоровых лиц.

Данное снижение содержания конечных метаболитов NO у больных СД 2 типа, возможно, обусловлено снижением чувствительности к NO, разрушением или захватом NO свободными радикалами вследствие усиления процессов перекисного окисления липидов, что привело к образованию эрозий [2; 8].

В результате проведенного комплексного лечения с привлечением «Пепсана» и «Кверцетина» у больных ЭГЭРБ и НГЭРБ в сочетании с СД 2 типа было установлено достоверное снижение содержания ЭТ-1 в крови в 2 и 2,2 раза (р<0,01) (таблицы 1, 2) и рост уровня стабильных метаболитов NO в 2,1 и 1,4 раза (р<0,01) соответственно относительно данных до лечения. У пациентов 1-й и 3-й групп наблюдалась лишь тенденция к снижению исследуемого вазоконстриктора на 13,9 % и 18,2 % (р>0,05) и к росту уровня вазодилататора на 22,1 % и 11,1 % (р>0,05), относительно данных до лечения, с вероятной разницей между 1-й и 2-й группой (р<0,01) и между 3-й и 4-й группой (р<0,05).

Выводы.

- 1. При ГЭРБ в сочетании с СД 2 типа наблюдается нарушение эндотелиальной функции, которое проявляется низкой чувствительностью сосудистого эндотелия к напряжению сдвига, слабой способностью сосудов к вазодилатации, патологической гиперпродукцией ЭТ-1 и понижением содержания стабильных метаболитов NO в плазме крови.
- 2. Использование «Пепсана» и «Кверцетина» в составе комплексной терапии ГЭРБ в сочетании с СД 2 типа позволяет уменьшить степень ЭД, и поэтому данные препараты могут быть рекомендованы к применению в практике.

Список литературы:

- Волков В.С. Состояние микроциркуляции и эндотелиальной дисфункции у больных сахарным диабетом 2-го типа и артериальной гипертонией / В.С. Волков, Е.В. Руденко // Клин. медицина. 2008. № 3. С. 42—43.
- 2. Дисфункция сосудистого эндотелия в оценке эпизодов ишемии миокарда при сахарном диабете 2-го типа / И.П. Татарченко, Н.В. Позднякова, А.Г. Мордовина и др. // Проблемы эндокринологии. 2009. № 6. С. 7—11.
- 3. Могильник А.І. Ендотеліальна дисфункція, стан мікроциркуляції та їх зв`язок із транспортними властивостями перитонеальної мембрани й резидуальною функцією нирок у пацієнтів на перитонеальному діалізі / А.І. Могильник // Укр. журн. нефрол. та діалізу. 2010. № 4. С. 40—44.
- Успенский Ю.П. Патогенетические основы дифференцированной тактики лечения гастроэзофагеальной рефлюксной болезни / Ю.П. Успенский, Е.И. Ткаченко // Сучасна гастроентерол. — 2010. — № 1. — С. 92—101.
- 5. Шишкин А.Н. Эндотелиальная дисфункция, метаболический синдром и микроальбуминурия / А.Н. Шишкин, М.Л. Лындина // Нефрология. 2009. № 3. С. 24—32.
- 6. Cyclooxygenase-2 and inducible nitric oxide synthase gene polymorphisms and risk of reflux esophagitis, Barrett's esophagus, and esophageal adenocarcinoma / H.R. Ferguson, C.P. Wild, L.A. Anderson et al. // Cancer Epidemiol. Biomarkers Prev. 2008. V. 17, № 3. P. 727.
- 7. Dhananjayan R. Association of family history of type 2 diabetes mellitus with markers of endothelial dysfunction in South Indian population / R. Dhananjayan, T. Malati, G. Brindha, VK Kutala // Indian J. Biochem Biophys. 2013. V. 50. № 2. P. 93—98.
- 8. Effects of Nitrosative stress an reactive oxygen-scavenging systems in esophageal physiopathy under streptozotocin-induced experimental hyperglycemia / O. Zayachkiwska, M. Grzegotsky, M. Ferents et al. // JPP. 2008. V. 59. № 2. P. 77—89.