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Abstract. Performed in this work are complex statistical and fractal analyses of phase 
properties inherent to birefringence networks of liquid crystals consisting of optically-
thin layers prepared from synovial fluid taken from human joints. Within the framework 
of a statistical approach, the authors have investigated values and ranges for changes of 
statistical moments of the 1-st to 4-th orders that characterize coordinate distributions for 
phase shifts between orthogonal components of amplitudes inherent to laser radiation 
transformed by synovial fluid layers for human joints with various pathologies. Using the 
Gramm-Charlie method, ascertained are correlation criteria for differentiation of phase 
maps describing pathologically changed liquid-crystal networks. In the framework of the 
fractal approach, determined are dimensionalities of self-similar coordinate phase 
distributions as well as features of transformation of logarithmic dependences for power 
spectra of these distributions for various types of human joint pathologies.  
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1. Introduction 

Among the methods for optical diagnostics of human 
biological tissues (BT), the methods of laser polarimetric 
diagnostics aimed at their optically-anisotropic structure 
are widely spread [1 - 33]. The main “information 
product” of these methods is availability of coordinate 
distributions for azimuths ( )yx,α  and ellipticity ( )yx,β  
of polarization (polarization maps) with the following 
types of analyses: statistical (statistical moments of the 
1-st to 4-th orders [13]), correlation (auto- and joint 
correlation function [14]), fractal (fractal 
dimensionalities [15]), singular (distributions of amounts 
of linearly and circularly polarized states [16 - 19]), 
wavelet analysis (sets of wavelet coefficients for various 
scales of biological crystals [20, 21]). As a result, 
interrelations between the set of these parameters and 
distributions of optical axis directions as well as values 
of the birefringence characterizing the network of 
optically uniaxial protein (myosin, collagen, elastin, etc.) 
fibrils in optically anisotropic components of BT layers 
can be determined. Using this base, developed is a set of 
methods for early recognition and differentiation of 
pathological changes in BT structures related with their 
degenerative-dystrophic and oncological changes [22, 
23].  

It is noteworthy that there exists a widespread 
group of optically anisotropic biological objects for 
which the methods of laser polarimetric diagnostics are 
not so efficient. Optically-thin (coefficient of extinction 

1.0≤τ ) layers of various biological liquids (bile, urine, 
liquor, synovial liquid, blood plasma, etc.) can be related 
to these objects. All these layers possess considerably 
less optical anisotropy of the biological component 
matter as compared with birefringent BT structures [1]. 
As a consequence, these objects weakly modulate 

polarization of laser radiation (
( )
( )⎩

⎨
⎧

→β
≈α

.0,
;,

yx
constyx

). On 

the other hand, the biological liquids are more available 
for a direct laboratory analysis as compared to traumatic 
methods of BT biopsy. From the above reasoning, it 
seems topical to search new, additional parameters for 
laser diagnostics of optically anisotropic structures in 
biological liquids. 

Our work is aimed at searching the possibilities to 
perform diagnostics of structures inherent to liquid-
crystal networks of synovial liquid taken from human 
joints with various pathologies by using the method to 
determine the coordinate distributions of phase shifts 
(phase maps) between orthogonal components of laser 
radiation amplitudes with the following statistical, 
correlation and fractal analyses of these distributions. 
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2. Optical model of synovial liquid 

As a base for modeling the optical properties of synovial 
liquid we use the conception of anisotropy observed in 
BT protein networks developed in [1, 16, 17, 24, 28, 29]: 
• synovial liquid can be considered as a two-

component amorphous-crystalline structure;  
• optically isotropic is the homogeneous complex of 

hyaluronic acid with proteins, high amount of 
leukocytes, high content of whole protein and lactic 
acid on the background of a low glucose content; 

• optically anisotropic – luquid-crystalline phase 
consisting of a set of optically uniaxial birefringent 
liquid crystals of various types: fibrin fibers, 
collagen fibers. 
 
The optical properties of amorphous { }A  and 

crystalline { }C  components of biological liquids can be 
exhaustively described using the following Jones 
operators [24]: 
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Here, τ  is the absorption coefficient for laser 

radiation in the biological liquid layer with the geometric 
thickness l ; ρ  - direction of the optical axis; 

ndΔλ
π=δ 2  - phase shift between the orthogonal 

components xE  and yE  of the amplitude of 
illuminating laser light with the wavelength λ ; nΔ  - 
index of birefringence.  

The Jones matrix of the biological liquid layer, 
where isotropic and anisotropic creations lie in one plane, 
can be expressed as a sum of operators { }A  and { }C  

{ } { } { }
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;;
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Let us consider the process of transformation of the 
complex amplitude ( UE → ) of a laser wave that passed 
through the biological liquid layer ({ }M ) located 
between two crossed phase filters – quarter-wave plates 
({ }1Φ  and { }2Φ ) and polarizers ({ }1P  and { }2P ), planes 
of transmission for which make +450 and –450 angles 
with axes of the highest velocity. The amplitude U  of 
the transformed laser beam in this experimental setup 
can be determined from the following matrix equation 

{ }{ }{ }{ }{ }EPPU 112225.0 ΦΜΦ= .          (4) 

Here,  
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In the special case of a plane-polarized wave 
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The solution of the matrix equation (6) is the value 

of complex amplitude ( )δU  that is determined 
exclusively by the phase shift δ  and does not depend on 
orientation of the optical axis ρ  for a laser image of 
biological liquid. Being based on it, one can write  

( ) [ ]2sin 2
0

δ==δ ∗ IUUI .                                 (7) 

Here, 0I  is the intensity of a probing laser beam, 
( )rIδ  - intensity of the laser image for the biological 

liquid layer in the point ( )r . 
Interrelations (4) to (7) define the algorithm for 

direct experimental measuring the coordinate 
distribution of phase shifts ( )rδ  between orthogonal 
components of the amplitudes yx UU ,  in the laser image 
of an optically anisotropic biological liquid layer.  

3. Optical scheme and method for experimental 
measuring the phase maps of biological liquids 

Shown in Fig. 1 is the optical scheme for phasometry of 
laser images obtained for biological liquids [7, 11, 32]. 

Illumination was carried out using the parallel 
beam (Ø= 410  µm) of He-Ne laser 1 (λ= 0.6328 µm). 
Using the polarization illuminator (quarter-wave plate 3 
and polarizer 4), we formed the beam linearly polarized 
with the azimuth 450. 

The axis of the highest velocity of the quarter-wave 
plate 5 was oriented at the angle °=Θ 45 relatively to 
the transmission plane of the polarizer 4. Images of 
biological liquid layers 6 were projected using the 
micro-objective 7 into the plane of the light-sensitive 
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area ( pixpixnm 600800 ×=× ) of a CCD camera 10. 
Rotating the transmission plane of the analyzer 9 by the 
angle °=Θ 45  relatively to the axis of the highest 
velocity of the quarter-wave plate 8, formed were the 
conditions for transmission of left-circular polarized 
oscillations of points in laser images of biological 
liquids. The intensity of these oscillations δI  was 
registered by each separate pixel in the CCD camera 10. 
Thus, we obtained the two-dimensional distribution 

⎟
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δ
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rr

rr
I
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 for this intensity. Further, in accord 

with (7), we calculated coordinate distributions (phase 
maps) for phase shifts δ(m×n) between orthogonal 
components of the amplitude for laser images of 
biological liquids. 

 
4. Algorithms for statistical, correlation and fractal 
analyses of phase maps 

 
To estimate δ(m×n) distributions, we calculated the set 
of statistical moments of the 1-st to 4-th orders 4;3;2;1=jZ  
[13, 18, 22, 28, 30, 31] 
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As a base for the analysis of the coordinate 

structure of ( )nm×δ , we took the autocorrelation 
method using the function [14] 
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Here, ( )pixm 1=Δ  is the step of changing the 
coordinate ( mx ÷=1 ) of a distribution in the set of 
polarization distributions ( )mδ  for a specific i -th line. 
The overall expression for the autocorrelation function is 
obtained by averaging the expression (9) over all the 
lines ni ÷=1   
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 As correlation parameters that characterize the 

dependences ( )mK Δ , we used: 
• correlation area S  

( ) ;
1
∫ Δ=
m

dmmKS                       (11) 

• correlation moments 2Q  and 4Q  that determine 
the dispersion and excess of the Gramm-Charlie 
expansion for the autocorrelation function ( )mK Δ  
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The fractal analysis of )( nm×δ distributions was 
performed using the calculation of logarithmic 
dependences ( ) 1loglog −−δ dJ  for the power spectra 
( )δJ  

( ) ∫
+∞

∞−

νπνδ=δ dJ 2cos ,                 (13) 

where 1−=ν d  are spatial frequencies that are 
determined by geometrical dimensions ( d ) inherent to 
structural elements of laser images for biological liquids. 

The dependences ( ) 1loglog −−δ dJ  are 
approximated using the least-squares method into the 
curves ( )ηV , straight parts of which are used to 
determine the slope angles η  and fractal 
dimensionalities F in accord with the relation [26]         

η−= tgF 3 .                                             (14) 
Classification of coordinate )( nm×δ distributions 

is fulfilled using the following criteria [1, 14, 27, 29, 
33]: 
• they are fractal with the proviso that the slope angle 

is constant ( const=η ) for 2 – 3 decades of 
changing the sizes d ; 

 
 
Fig. 1. Optical scheme of the phase meter. 1 – He-Ne laser; 2 – collimator; 3, 5, 8 – quarter-wave plates; 4, 9 – polarizer and 
analyzer, respectively; 6 – investigated object; 7 – micro-objective; 10 – CCD camera; 11 – personal computer. 
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• they are multi-fractal on the condition that there 
available are several slope angles ( )ηV p; 

• they are random, if any stable slope angles ( )ηV  
do not exist within the whole range of changing the 
sizes d . 
In the latter case, the ( ) 1loglog −−δ dJ  

distributions are characterized with the dispersion   

( )[ ]∑
=

−−δ=
N

i
idJ

N
D

1

21loglog1 .   (15) 

 

5. Statistical, correlation and fractal parameters of 
phase maps for synovial liquid 

As objects for experimental studying, we chose 
optically-thin layers of synovial liquid taken from a joint 
of the healthy patient (Fig. 2a)and with osteoarthritis 
(Fig. 2b). 

The images of layers prepared from synovial liquid 
taken from human joints (Fig.2 (a), (d)) are indicative of 
availability of two fractions – optically isotropic and 
liquid-crystal network (anisotropic one). As seen, 
geometric structure and sizes of separate elements in the 
polycrystalline network of the samples prepared from 
biological liquids are individual for different types of 
pathology. 

Shown in Fig. 2 are the phase maps (fragments (b), 
(e)) and histograms (fragments (c), (f)) for distributions 
of random values inherent to the phase shifts δ  between 
orthogonal components of the laser radiation amplitude 
transformed inside layers of synovial liquid taken from 
healthy patient’s joints (fragments (b), (c)) and with 
osteoarthritis (fragments (e), (f)).  

The obtained data show that the value of phase 
shifts δ  for laser radiation transformed inside layers of 
synovial liquid lies within the short range of changes 

10 ≤δ≤ . The weak phase modulation is related with 
two factors. First, it is low geometric thickness 
(d = 10…15 µm) of the samples. Second, it is weak 
birefringence ( 24 10...10~ −−Δn ) of liquid-crystal 
structures in synovial liquid, which is determined by the 
concentration of fibrin and collagen structures [1]. 

Our comparative analysis of histograms for 
distributions of random values inherent to phase shifts 
δ  in laser images of both types synovial liquids 
revealed availability of two dominant extreme ranges: 
0 ≤ δ ≤ 0.15 and 0.85 ≤δ ≤ 1. In our opinion, these 
features of probabilistic phase distributions are related 
with the influence of optically isotropic ( 0→δ ) and 
liquid-crystal ( 1→δ ) components in the composition of 
biological liquid.  

  Being aimed at more specific investigation of 
phase features for both fractions, we used the following 
method to select information. From the available 

coordinate set of values ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
δδ
δδ

=×δ
mnn

nnm
,...
,...

1

111  in 

phase maps (Fig. 2 (b) and (e)), we found samples of 
extreme values ( ) 0=×δ nm  and ( ) 1=×δ nm . In what 
follows, by scanning along the direction nx ÷=1  we 
carried out calculation of the amount of extreme values 
for phase shifts within the column pixnm 1×= . Within 

the limits of each local sample ( )( )mk
pixpix n ...,,2,11 =×  , 

we computed the amount ( N ) of extreme values 
( ) 0=kδ  ( ( )kNmin ) and ( ) 1=δ k  ( ( )kNmax ). Thus, we found 

the dependences 
( ) )...,,,( )(

min
)2(

min
)1( m

msnmsn NNNxN ≡  і 

( ) )...,,,( )(
max

)2(
max

)1(
maxmax

mNNNxN ≡  for 
the amount of extreme values of phase shifts within the 
limits of laser image for synovial liquid.  

Fig. 2 show a set of coordinate distributions 
( ) 1;0=×δ nm  (fragments (g), (k) and (o), (s)) for the 

dependences of the amount of extreme values 
( )xN maxmin;  (fragments (h), (l) and (p), (t)), 

autocorrelation functions ( )xK Δmaxmin;  (fragments (i), 
(m) and (q), (u)) and logarithmic dependences 

( ) 1
maxmin; loglog −− dNJ  for power spectra of 

distributions ( )xN maxmin;  (fragments (j), (n) and (r), (v)) 
that characterize phase maps for the samples of synovial 
liquid belonging to a healthy patient (fragments (g)-(j) 
and (o)-(r)) and a patient with osteoarthritis (fragments 
(k)-(n) and (s)-(v)).  

The comparative analysis of the obtained set of 
experimental data about statistical, correlation and 
fractal structures in dependences for the amount of 
extreme values ( )xN maxmin;  inherent to phase maps 
describing layers of synovial liquids taken from joints of 
a healthy patient and that sick with osteoarthritis enabled 
to found: 
• tendency to a decreasing (increasing) total amount 

of extreme values 0min →δ  ( 1max →δ ) of the 
phase shifts in laser images of layers prepared from 
synovial liquid of a patient with osteoarthritis (Fig. 
2 fragments (h), (l) and (p), (t)); 

• fact that autocorrelation functions ( )xK Δmin  (Fig. 
2, fragments (i, m)) monotonically drop with 
increasing the step of scanning xΔ  in dependences 

( )xNmin ;   
• correlation structure of the distribution for the 

extreme sample ( ) 1=×δ nm  in the phase map 
describing the polycrystalline component in 
synovial liquid of a sick patient changes: at the 
background of monotonic drop there arise 
oscillations of values in the dependence ( )xK Δmax  
(see Fig. 2, fragment (u)); 
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Fig. 2. Here: polycrystalline networks of synovial liquid taken from a joint of the healthy patient (a) and with osteoarthritis (d); 
coordinate (b, e) and quantitative (c, f) distributions δ  of laser images for the samples of synovial liquid taken from healthy 
patient’s joints (b, e) and with osteoarthritis arthritis (c, f); coordinate ( )nm×  (g, k), quantitative ( )xNmin  (h, l), correlation 

( )xK Δmin  (i, m) and fractal  ( ) 1
min loglog −− dNJ  (j, n) parameters of the extreme sample ( ) 0=×δ nm  for phase maps 

of the samples of synovial liquid belonging to a healthy patient (g, h, i, j) and a patient with osteoarthritis (k, l, m, n) ; 

coordinate ( )nm×  (o, s)), quantitative ( )xNmin  (p, t), correlation ( )xK Δmin  (q, u) and fractal  ( ) 1
min loglog −− dNJ  (r, 

v) parameters of the extreme sample ( ) 0=×δ nm  for phase maps of the samples of synovial liquid belonging to a healthy 
patient (o, p, q, r) and a patient with osteoarthritis (s, t, u, v). 
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• logarithmic dependences for the power spectra of 
distributions ( )xNmin  for the optically isotropic 
component in synovial liquid of both types possess 
a stable slope angle (Fig. 2, fragments (d, f)) within 
the whole range of geometric sizes inherent to the 
laser image registered by the CCD camera (Fig. 1); 

• fractal distributions ( )xNmax  for phase maps of 
laser images describing the optically anisotropic 
fraction of synovial liquid taken from a healthy 
man (Fig. 2, fragment (j)) are transformed into the 
statistical ones in the case of osteoarthritis: 
approximating curve in the dependence 

( ) 1
max loglog −− dNJ  has no stable slope (Fig. 2, 

fragment (n)). 
From the quantitative viewpoint, the dependences 

( )xN maxmin;  illustrate statistical δ
41−=iM , correlation 

δδδ QSR ;;  and fractal δδ DF ;  parameters determined 
within the limits of two patient groups, and they are 
summarized in Tables 2 and 3. 

Our analysis of the parameters determined 
experimentally has shown that the following parameters 
are diagnostically sensitive in observation of 
inflammatory processes 
• statistical moments of the third ( δ

3M ) and fourth 

( δ
4M ) orders in distributions for the amount of 

extreme values ( )xN max  of phase shifts 
( ) 1=×nmδ  in laser images for synovial liquids of 

both types – differences between them reach 2.4 
and 4.1 times; 

• dispersion ( δ
2R ) and excess ( δ

4R ) of the Gramm-
Charlie expansion for autocorrelation functions 

( )xK Δmax  related to distributions ( )xNmax  differ 
by 1.8 and 2.7 times; 

• correlation area δS  for the autocorrelation 
dependence ( )xK Δmax  of the distribution for the 
amount of extreme phase shifts in a laser image 
inherent to joint synovial liquid of a patient with 
osteoarthritis is 2.55 times less than that parameter 
determined for a healthy patient; 

• distributions ( )xNmax  for the phase maps 
describing synovial liquid for healthy and sick 
patients are, respectively, fractal and statistical; 

• dispersion δD  of the dependences 
( ) 1

max loglog −− dNJ  in the case of pathological 
changes in the polycrystalline structure of synovial 
liquid is 1.75 times decreased. 

6. Conclusions 

Thus, one can draw the following conclusions: 
1.  Synovial liquid of human joints, independently 

of their physiological state, contains phase-modulating 
optically anisotropic network of biological crystals. 

2.  Ascertained and grounded is a set of criteria for 
phase diagnostics of inflammatory processes 
(osteoarthritis, atrophic arthritis) as being based on 

Table 2. Statistical moments δ
−= 41iM  that characterize the distributions for amounts of extreme values in coordinate 

distributions ( )nm×δ  of laser images for synovial liquid.  

( )nm×δ  ( ) 0=×δ nm  ( ) 0=×δ nm  

δ
41−=iM  

Healthy 
(18 patients) 

Osteoarthritis 
(19 patients) 

Healthy 
(18 patients) 

Osteoarthritis 
(19 patients) 

δ
1M  0.46± 0.049 0.51± 0.055 0.22± 0.028 0.36± 0.042 
δ
2M  0.11± 0.015 0.09± 0.011 0.23± 0.03 0.13± 0.017 
δ
3M  0.21± 0.024 0.15± 0.018 0.89± 0.097 2.17± 0.27 
δ
4M  0.29± 0.036 0.23± 0.027 0.77± 0.081 2.86± 0.31 

Table 3. Correlation δδδ QSR ;;  and fractal δδ DF ;  parameters that characterize distributions for amounts of extreme values 

in coordinate distributions ( )nm×δ  for laser images of synovial liquid.  

( )nm×δ  ( ) 0=×δ nm  ( ) 0=×δ nm  

Parameters Healthy 
(18 patients) 

Osteoarthritis 
(19 patients) 

Healthy 
(18 patients) 

Osteoarthritis 
(19 patients) 

δ
2R  0.35 ± 0.037 0.36 ± 0.039 0.19 ± 0.022 0.31 ± 0.033 
δ
4R  0.11 ± 0.013 0.09 ± 0.009 0.89 ± 0.0994 2.64± 0.27 
δS  0.28 ± 0.016 0.24 ± 0.014 0.17 ± 0.021 0.08 ± 0.015 

1F  2.09 ± 0.17 1.97 ± 0.15 1.92 ± 0.18 statistical 

δD  0.18 ± 0.022 0.21 ± 0.028 0.27 ± 0.033 0.18 ± 0.023 
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statistical (statistical moments of the first to fourth 
orders), correlation (statistical moments for the Gramm-
Charlie expansion, correlation area) and fractal (fractal 
dimensionality and dispersion for the distribution of 
extrema in log – log dependences of power spectra) 
analyses of phase distributions in laser images of 
synovial liquid.  
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