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ABSTRACT 

The paper consists of two parts. The first part presents short theoretical basics of the method of azimuthally-invariant 
Mueller-matrix description of optical anisotropy of biological tissues. It was provided experimentally measured 
coordinate distributions of Mueller-matrix invariants (MMI) of linear and circular birefringences of skeletal muscle 
tissue. It was defined the values of statistic moments, which characterize the distributions of amplitudes of wavelet 
coefficients of MMI at different scales of scanning. The second part presents the data of statistic analysis of the 
distributions of amplitude of wavelet coefficients of the distributions of linear birefringence of myocardium tissue died 
after the infarction and ischemic heart disease. It was defined the objective criteria of differentiation of the cause of 
death. 
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1. THEORETICAL BASICS AND EXPERIMENTAL REALIZATION OF THE METHOD 
OF 3D MUELLER-MATRIX MAPPING OF BIOLOGICAL LAYERS 

 
1.1. Analytical foundations of 3D Mueller-matrix mapping 

 
In the set of works 1-13 it were defined the algorithms and methods of polarimetric and correlation obtaining of the 
information about 2D distributions of optical anisotropy of biological tissues.  As the basis of theoretical description of 
the method of 3D Mueller-matrix mapping it was used the results obtained in 14,15. Here, the use of a reference wave of 
laser radiation, which in the scheme of optical interferometer is superimposed on a polarizationally inhomogeneous 
image of a biological layer is fundamental. The resulting interference pattern is recorded using a digital camera. With the 
use of diffraction integrals the operation of digital holographic reproduction of distributions of complex amplitudes 

( ) ( ){ }yxEyxE yx ,;,  of the objective field of a biological layer is performed 16. 
For each state of the irradiating beam, the reconstructed distributions of the Stokes vector parameters of the object 

field of a biological layer are calculated according to the reproduced distributions of complex amplitudes 
( ) ( ){ }yxEyxE yx ,;,  
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Here 000 45,90,0  – polarization azimuths of linearly polarized irradiating beams, ⊗  – the right-circularly polarized 

beam. 
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Further, on the basis of relations (1), the set of Mueller matrix elements is calculated by the following Stokes-
polarimetric relations: 

• for Stokes vectors of linearly polarized probing beams ( ) ( )0000 90;0 SS : 
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• for Stokes vectors of linearly polarized probing beams ( ) ( )0000 135;45 SS : 
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• For Stokes vectors of right- and left-circularly polarized probing beams ( ) ( )⊕⊗ 00 ; SS : 
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Therefore, the direct Muller-matrix mapping results in two-dimensional distributions of the values of matrix 

elements ( )( )δ,,4;3;2;1 yxSqM zjik == , averaging ( ( )lz =δ ) over the entire thickness l  of the biological layer. 
In the case of using a coherent reference wave and algorithms of digital holographic reproduction 14,15 it is possible 

to reconstruct the distributions of complex amplitudes ( ) ( )yyxx iEiE δδ ΔΔ exp;exp  of the object field in a discrete 

( ql ....0=Δδ ) set of phase planes 
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j . Due to this, one can obtain a set of layer-by-layer distributions of the values 

of matrix elements ( δΔkyx ,, ) and determine their volumetric structure 
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As the information Mueller-matrix parameters we have used the azimuthal invariants. The analysis of Mueller-
matrix invariants (MMI), which is given in17-31, revealed their individual "informational" load. Thus, the MMIs 44M , 
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=Δ  values are predominantly determined by the parameters of phase anisotropy – phase shifts between 

the orthogonal linearly and (ϕ ) and circularly (θ ) polarized components of the amplitudes of laser radiation 
 

{ .~;cos~44 θϕ tgMM Δ                                                                     (6) 
 
 

1.2. Experimental results of the method of biological layers birefringence mapping  

As the test object we have used the histological section of skin derma. The main anisotropic structures of such objects are 
the collagen fibrils with linear and circular birefringence. The values of such parameters of optical anisotropy are most 
adequately described by MMI 44M  and MΔ  (relation (6)) 1-3.  

Fig. 1 presents the 3D distributions of MMI ( )δ,,44 yxM  of linear birefringence of histological section of skin 
derma. Here presented are the following phase sections (relation (5)) δδ =j  (fragment (1)); δδ 7.0=j  (fragment (2)); 

δδ 4.0=j  (fragment (3)); δδ 1.0=j  (fragment (4)). 
 

 
Fig. 1. Phase sections of 3D distributions of MMI ( )δ,,44 yxM  of linear birefringence of the histological section of skin 

derma: δδ =j  (fragment (1)); δδ 7.0=j  (fragment (2)); δδ 4.0=j  (fragment (3)); δδ 1.0=j  (fragment (4)). 

 
In Fig. 2 it was presented the 3D distributions of MMI ( )δ,, yxMΔ  of circular birefringence of the histological 

section of skin derma. Here presented the following phase sections (relation (5)) δδ =j  (fragment (1)); δδ 7.0=j  

(fragment (2)); δδ 4.0=j  (fragment (3)); δδ 1.0=j  (fragment (4)). 
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Fig. 2. Phase sections of 3D distributions of MMI ( )δ,, yxMΔ  of circular birefringence of the histological section of skin 

derma: δδ =j  (fragment (1)); δδ 7.0=j  (fragment (2)); δδ 4.0=j  (fragment (3)); δδ 1.0=j  (fragment (4)). 

 
Table 1 presents the results of statistic analysis (statistical moments of the 1st – 4th orders 4;3;2;1=iZ ) of coordinate 

distributions MMI of the histological section of skin derma in the set of phase sections (relation (5)). 
 

Table 1. Statistical moments 4;3;2;1=iZ  of the distributions MMI of skin derma anisotropy 

4;3;2;1=iZ  44M  MΔ  
δ  δ  δ7.0  δ4.0  δ1.0  δ  δ7.0  δ4.0  δ1.0  

1=iZ  0.47 0,21 0.36 0.15 0.27 0.21 0.12 0.09 

2=iZ  0,21 0,14 0.17 0.11 0.14 0.11 0.13 0.103 

3=iZ  0,56 0.77 1.24 1.58 0.85 0.97 1.66 2.15 

4=iZ  0,43 0.92 1.48 2.02 0.74 1.19 1.78 2.42 
  

Individual sensitivity of the value 4;3;2;1=iZ  to the features of the coordinate distributions of MMI of linear and 
cirrus birefringence of the skin dermis layer was established. The most optimal were (grayed out) the following phase 
sections - 44M ( δ4.0 ) и MΔ ( δ7.0 ). 
 This fact was using in the basis of applied biomedical use of statistical analysis of coordinate distributions of 
linear birefringence. 
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2. CLINICAL APPLICATION OF 3D MUELLER-MATRIX MAPPING OF 

BIREFRINGENCE IN DIFFERENTIAL DIAGNOSTICS OF ENDOMETRIOSIS 
 

2.1. Objects of investigation 

Two groups of samples of histological sections of biopsy of uterus: 
• endometriosis of the 1 degree – group 1 (32 samples); 
• endometriosis of the 2 degree – group 2 (32 samples);. 

Histological sections were produced due to the standard technique on the freezing microtome. 
 

2.2. Experimental results 

Fig. 3 presents the results of 3D mapping of the MMI distributions of linear (fragments (1),(2)) and circular (fragments 
(3),(4)) birefringences of the histological sections of the uterus biopsy with endometriosis 1 (fragments (1),(3)) and 2 
(fragments (2),(4)) in the following sections - 44M ( δ4.0 ) and MΔ ( δ7.0 ). 
 

 
 

Fig. 3. The results of 3D mapping of the MMI distributions of linear (fragments (1),(2)) and circular (fragments (3),(4)) 
birefringences of the histological sections of the uterus biopsy with endometriosis 1 (fragments (1),(3)) and 2 (fragments 
(2),(4)) in the following sections - 44M ( δ4.0 ) and MΔ ( δ7.0 ). 

 
For the possible clinical application of the Mueller matrix mapping method for each group of samples the operating 

characteristics, typical for evidence-based medicine 32-34 that determine the diagnostic power of the method are 

determined, namely – sensitivity ( %100
ba
aSe
+

= ), specificity ( %100
dc
cSp
+

= ) and balanced accuracy 
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(
2
SpSeAc +

= ), where a  and b  – the number of correct and incorrect diagnoses within group 2; c  and d  – the same

within group 1 – Table 2. 

Table 2.  Balanced accuracy of the method of 3D mapping of the distributions of linear and circular birefringence. 

,%Ac  ( )δ4.044M ( )δ7.0MΔ

1=iZ  73% 69%

2=iZ 76% 74%

3=iZ 93% 82%

4=iZ 96% 84%

It was reached a good ( ( ) %84%82 −=ΔMAc ) and excellent ( ( ) %96%9344 −=MAc ) level of balanced accuracy
of the method of phase sections of 3D Mueller-matrix images of linear and circular birefringence of the histological 
sections of uterus in differentiation of the severity degree of endometriosis. 

CONCLUSIONS 
Short theoretical basics of the method of azimuthally-invariant 3D Mueller-matrix mapping of polycrystalline structure 
of the distributions of parameters of linear and circular birefringence of biological layers polycrystalline structure were 
provided. It was demonstrated the results of experimental approbation of such method and defined the distributions of 
Mueller-matrix invariants in the set of phase sections of linear and circular birefringence of the endometrium histological 
section. The differentiation of linear and circular birefringence of endometrium with different severity degree was 
realized. It was reached a good and excellent levels of balanced accuracy of differentiation of endometriosis severity 
degree. 
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