МІНІСТЕРСТВО ОХОРОНИ ЗДОРОВ'Я УКРАЇНИ БУКОВИНСЬКИЙ ДЕРЖАВНИЙ МЕДИЧНИЙ УНІВЕРСИТЕТ»

МАТЕРІАЛИ

104-ї підсумкової науково-практичної конференції з міжнародною участю професорсько-викладацького персоналу БУКОВИНСЬКОГО ДЕРЖАВНОГО МЕДИЧНОГО УНІВЕРСИТЕТУ 06, 08, 13 лютого 2023 року

Конференція внесена до Реєстру заходів безперервного професійного розвитку, які проводитимуться у 2023 році №5500074

Чернівці – 2023

such as Cu or Ag, and B represents trivalent metals from Al to La. Delaphosite $CuFeO_2$ is a p-type semiconductor, the band gap of which can vary from 0.91 to 3.35 eV . $CuFeO_2$ has a relatively high electrical conductivity compared to other delaphosites, only $CuCrO_2$ is higher. $CuFeO_2$ can exhibit both the properties of multipheroism and spintronics. Investigation of magnetic and magnetoelectric properties of $CuFeO_2$ is intensively studied.

This paper presents the results of the study of the electrical properties and spectral photosensitivity of the CuFeO₂ / n-InSe heterojunction fabricated by spray pyrolysis of pyrite thin films on n-InSe substrates.

Conclusions. The spectral dependence of the quantum efficiency of the CuFeO₂ film irradiated from the CuFeO₂ / n-InSe heterostructure in the range of photon energies $1.2 \div 3.2$ eV with a maximum at 2.3 eV has been studied. It is established that the long-wavelength edge of photosensitivity at hv = 1.2 eV is due to the edge of fundamental absorption in n-InSe. CuFeO₂ thin films are polycrystalline, as a result of which the intrinsic absorption edge is blurred due to partial absorption at the grain boundaries compared to monocrystalline materials. At energies $hv < E_g = 2.4$ eV) part of the radiation is absorbed at the grain boundaries. In this case, light that is able to be absorbed in n-InSe does not penetrate into the base region due to absorption in CuFeO₂.

Vlad H.I. MORE ON THE EXTENSION OF LINEAR OPERATORS ON RIESZ SPACES

Department of Biological Physics and Medical Informatics Bukovinian State Medical University

Introduction. The classical Kantorovich theorem asserts the existence and uniqueness of a linear extension of a positive additive mapping, defined on the positive cone E^+ of a Riesz space E taking values in an Archimedean Riesz space F, to the entire space E. We prove that, if E has the principal projection property and f is Dedekind σ -complete then for every $e \in E^+$ every positive finitely additive f-valued measure defined on the Boolean algebra F_e of fragments of c has a unique positive linear extension to the ideal E_e of E generated by e. If, moreover, the measure is τ -continuous then the linear extension is order continuous. Main result:

The aim of the study. Given a Riesz space E and $e \in E$, by F, we denote the Boolean algebra of all fragments of e, and by E_e , the ideal of E generated by e, that is,

 $F_e = \{x \in E \colon x \sqsubseteq e\} \text{ and } E_e = \{x \in E \colon (\exists \lambda > 0) | \mathbf{x} | \le \lambda | e|\}.$

Material and methods. Let B be a Boolean algebra and F be a Riesz space. A mapping v: B \rightarrow F+ is called a positive finitely additive vector measure if v (x \sqcup y) = v(x) + v(y) for all disjoint x, y \in B. A positive finitely additive vector measure v: B \rightarrow F is called:

- τ-continuous provided for every nonempty upward directed set A ⊆ Bfor which sup A exists in B one has that sup v(A) exists in F and v(sup A) =sup v(A);
- σ -continuous provided for every increasing sequence (x_n) in B for which $\sup_n x_n$ exists in B one has that $\sup_n v(x_n)$ exists in F and $v(\sup_n x_n) = \sup_n v(x_n)$.

Theorem 1. Let *E* be a Riesz space with the principal projection property, $0 < e \in E$ and F be a Dedekind σ -complete Riesz space. Then for every positive finitely additive vector measure v: Fe \rightarrow F there exists a unique positive linear operator T: $E_e \rightarrow F$, which extends v, that is, Tx = v(x) for all $x \in Ee$. Moreover, if v is τ -continuous (or σ -continuous) then T is order continuous (respectively, order σ -continuous).

Results. Example 1. Set $E = L_p := Lp[0, 1]$ with $0 \le p < \infty$, $F = L\infty$, $e = 1_{[0,1]}$ (the characteristic function of [0, 1]). Then $B_e = L_p$, and the measure $v: F_e \to F$ defined by setting v(x) = x for all $x \in F_e$ has no positive linear extension T: $L_p \to L_\infty$.

Conclusions. Indeed, if such an extension T existed then it would satisfy (1) in place of T[°], which implies Tx = x for all e-step functions x. Then, Tx = x for all $x \in L_{\infty}$. It concludes that T is a linear bounded projection of L_p onto the non-closed linear subspace L_{∞} of L_p, which contradicts the boundedness of T.